首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In2(Se1-xTex)3 polycrystalline films were prepared by a dual-source thermal evaporation technique. The depositions onto glass and SnO2-coated glass substrates were carried out in a vacuum chamber and followed by an annealing in neutral ambient (Ar or N2). The structural, morphological and compositional studies of the films were made by X-ray diffraction, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman scattering and optical transmission. Optimum conditions are investigated for the formation of the ternary compound In2(Se1-xTex)3 in order to tune the band gap by changing the Te concentration. The film properties as a function of Te amount are discussed. It is shown that single-phase, textured and homogeneous layers of In2(Se1-xTex)3 can be grown with x≤0.2 at optimal deposition and heat treatment conditions. For x≅0.17 these films showed an energy band gap of about 1.45 eV and an electrical conductivity at room temperature six orders of magnitude higher than that of the binary γ-In2Se3 thin films. Received: 9 July 1999 / Accepted: 25 November 1999 / Published online: 13 July 2000  相似文献   

2.
《Current Applied Physics》2014,14(3):508-515
In the present paper we report structural, optical, morphological and electrical properties of thin films of MoBi2S5 prepared by facile self organized arrested precipitation technique (APT) from aqueous alkaline bath. X-ray diffraction study on thin films suggests orthorhombic and rhombohedral mixed phase structure. The samples are further annealed under vacuum at 373 and 473 K. The EDS pattern shows minor loss of sulphur upto 473 K. The optical absorption in visible region shows direct allowed transition with band gap variation over 1.2–1.1 eV. Post-heat treated samples exhibit n-type electrical conductivity. SEM images show uniform distribution of spherical grains with diameter ∼200 nm for as-synthesized MoBi2S5 thin film. The grain size increases with annealing temperature and morphology becomes more compact due to crystallization of thin film. The surface roughness deduced from AFM, was in the range of 1.29–1.92 nm. The MoBi2S5 thin films are employed for the fabrication of photoelectrochemical solar cells as all the samples exhibit strong absorption in visible to near IR region. Due to vacuum annealing it gives a significant enhancement of power conversion efficiency (η) upto 0.14% as compared to as-synthesized MoBi2S5 thin film.  相似文献   

3.
Glassy substrates Se79Te15Sb6 thin films are thermally evaporated onto chemically cleaned glass. Optical absorption measurements are carried out on as-deposited and thermal annealed Se79Te15Sb6 films. It is found that the mechanism of the optical absorption follows the rule of non-direct transition. The annealed Se79Te15Sb6 films show an increase in the optical energy gap with increasing temperature of annealing higher than the glass transition temperature (363 K). The electrical conductivity of the as-deposited and annealed films is found to be of Arrhenius type with temperature in the range 300–360 K. The effect of thermal annealing on the activation energy for conduction is also studied. The results are discussed on the basis of amorphous–crystalline transformations. PACS 61.40; 61.40.D; 64.70.D; 72.80.N; 78.65.M  相似文献   

4.
N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and −180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.  相似文献   

5.
Bi5GexSe95−x (30, 35, 40 and 45 at.%) thin films of thickness 200 nm were prepared on glass substrates by the thermal evaporation technique. The influence of composition and annealing temperature, on the structural and electrical properties of Bi5GexSe95−x films was investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). The XRD patterns showed that the as-prepared films were amorphous in nature with few tiny crystalline peaks of relatively low intensity for 30 and 45 at.% and the Bi5Ge40Se55 annealed film was polycrystalline. The chemical composition of the Bi5Ge30Se65 film has been checked using energy dispersive X-ray spectroscopy (EDX). The electrical conductivity was measured in the temperature range 300-430 K for the studied compositions. The effect of composition on the activation energy (ΔE) and the density of localized states at the Fermi level N(EF) were studied, moreover the electrical conductivity was found to increase with increasing the annealing temperature and the activation energy was found to decrease with increasing the annealing temperature. The results were discussed on the basis of amorphous-crystalline transformations.  相似文献   

6.
《Current Applied Physics》2015,15(3):261-264
Bismuth telluride (Bi2Te3) thin films were electrodeposited at room temperature from nitric baths in the presence of a surfactant, cetyltrimethylammonium bromide (CTAB). Nearly stoichiometric Bi2Te3 thin films were obtained from electrolytes containing 7.5 mM Bi(NO3)3. The surface morphology and mechanical properties of the electrodeposited thin film were improved by the addition of CTAB to the electrolyte, while the electrical and thermoelectric properties were preserved. Post-deposition annealing in a reducing environment did not improve the electrical and thermoelectric properties, possibly because the change in the microstructure of the Bi2Te3 thin film was too small.  相似文献   

7.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

8.
In electrical properties, the dc conductivity and photoconductivity measurements have been made in vacuum evaporated thin films of a-(Se70Te30)100−x(Se98Bi2)x system, in the temperature range (308–355 K). It has been observed that dc conductivity and activation energy depend on the Bi concentration. Photocurrent dependence on incident radiation has also been observed which follow the power law (IphFγ). Transient photocurrent exhibits the non-exponential decay time. All these parameters show that the recombination within the localized states is predominant. In crystallization kinetics, the heating rate dependence of glass transition and crystallization temperatures is studied to calculate the activation energy for thermal relaxation and activation energy for crystallization. The composition dependence of the activation energy for thermal relaxation and activation energy for crystallization is discussed in terms of the structure of Se–Te–Bi glassy system.  相似文献   

9.
Abstract

Se(0.85) Te(0.15) films were prepared by thermal evaporation under vacuum on glass substrate. The optical and electrical properties of as deposited and irradiated Se(0.85) Te(0.15) films with different γ-doses are reported.

The optical constants (absorption coefficient (α), extinction coefficient (k), refractive index (n) and dielectric constants (?, ?) of unirradiated and irradiated films were calculated. The value of allowed direct optical energy gap of Se(0.85) Te(0.15) films increased from 1.47 eV. to 1.72 eV. with increasing the γ-doses to 2.5 Mrad. The irradiated films have lower resistivity than those as deposited films (unirradiated). The activation energy (ΔE) increases from 0.72 eV. to 0.86 eV. with increasing γ-doses to 2.5 Mrad.  相似文献   

10.
p-CuIn0.7Ga0.3(Se(1?x)Tex)2 type thin films were synthesized by thermal evaporation method on Mo coated glass substrates. To obtain Al/CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo Schottky diode structure for two compositions of x = 0.0 and 0.6, Al metal was evaporated on upper surface of CuIn0.7Ga0.3(Se(1?x)Tex)2 as a front contact. Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo structures were annealed temperature range from 150 °C to 300 °C for 10 min under vacuum. The electrical and dielectrical properties of Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2 (CIGSeTe) Schottky barrier diodes (SBD) have been investigated. Capacitance–Voltage (CV) characteristics, Conductance–Voltage (G/wV) characteristics and interface state density were studied in order to obtain electrical and dielectrical parameters. The effects of interface state density (Nss), series resistance (Rs), the dielectric constant (?′), dielectric loss (?″), dielectric loss tangent (tan δ), ac electrical conductivity (σac) and carrier doping densities were calculated from the CV and G/wV measurements and plotted as a function of annealing temperature. It was observed that the values of carrier doping density NA for annealing temperature at 150 °C decreased from 2.83 × 10+15 cm?3 to 2.87 × 10+14 cm?3 with increasing Te content from x = 0.0 to 0.6. The series resistance for x = 0.0 found to be between 10 and 75 Ω and between 50 and 230 Ω for x = 0.6 in the range of annealing temperature at 150–300 °C.  相似文献   

11.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

12.
This work considers the effect of vacuum annealing on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin film and Sb0.9Bi1.1Te2.9Se0.1–C composites with various carbon contents produced by ion-beam deposition in an argon atmosphere. The electrical resistivity and the thermopower of Sb0.9Bi1.1Te2.9Se0.1–C nanocomposites are found to be dependent on not only the carbon concentration but also the type and the concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution, which determine the type of conductivity of Sb0.9Bi1.1Te2.9Se0.1 granules. The power factors are estimated for films of Sb0.9Bi1.1Te2.9Se0.1 solid solution and films of Sb0.9Bi1.1Te2.9Se0.1–C composites and found to have values comparable with the values for nanostructured materials on the basis of (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

13.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

14.
采用高温熔融缓冷和放电等离子烧结工艺制备了p型Ag0.5(Pb8-xSnx)In0.5Te10五元化合物.研究了Sn含量对化合物载流子传输特性及热电性能的影响规律.结果表明:在Ag0.5(Pb8-xSnx)In0.5Te10(x 关键词: 0.5(Pb8-xSnx)In0.5Te10')" href="#">Ag0.5(Pb8-xSnx)In0.5Te10 合成 载流子 热电性能  相似文献   

15.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

16.
CuIn0.5Ga0.5Te2 (CIGT) thin films have been prepared by e-beam evaporation from a single crystal powder synthesized by direct reaction of constituent elements in a stoichiometric proportion. Post-depositional annealing has been carried out at 300 and 350 °C. The compositions of the films were determined by energy dispersive X-ray analysis (EDXA) and it was found that there was a remarkable fluctuation in atomic percentage of the constituent elements following to the post-depositional annealing. X-ray diffraction analysis (XRD) has shown that as-grown films were amorphous in nature and turned into polycrystalline structure following to the annealing at 300 °C. The main peaks of CuIn0.5Ga0.5Te2 and some minor peaks belonged to a binary phase Cu2Te appeared after annealing at 300 °C, whereas for the films annealed at 350 °C single phase of the CuIn0.5Ga0.5Te2 chalcopyrite structure was observed with the preferred orientation along the (1 1 2) plane. The effect of annealing on and near surface regions has been studied using X-ray photoelectron spectroscopy (XPS). The results indicated that there was a considerable variation in surface composition following to the annealing process. The transmission and reflection measurements have been carried out in the wavelength range of 200-1100 nm. The absorption coefficients of the films were found to be in the order of 104 cm−1 and optical band gaps were determined as 1.39, 1.43 and 1.47 eV for as-grown and films annealed at 300 and 350 °C, respectively. The temperature dependent conductivity and photoconductivity measurements have been performed in the temperature range of −73 to 157 °C and the room temperature resistivities were found to be around 3.4 × 107 and 9.6 × 106 (Ω cm) for the as-grown and annealed films at 350 °C, respectively.  相似文献   

17.
The effect of temperature and pressure on the thermal conductivity of solid solutions based on the As2(Se1 - xTex)3 system was investigated in glassy and polycrystalline samples at 273–450 K and hydrostatic pressures of up to 0.35 GPa. The compound As2Se3 was studied in a temperature range of 300–760 K. Analysis showed that the short-cange order structure in As2Se3 remains unchanged upon the glass—liquid transition right up to 760 K.  相似文献   

18.
The Zinc Selenide (ZnSe) thin films have been deposited on SnO2/glass substrates by a simple and inexpensive chemical bath deposition (CBD). The structural, optical and electrical properties of ZnSe films have been characterized by X-ray diffraction (XRD), Energy Dispersive X-ray Analysis (EDAX), optical absorption spectroscopy, and four point probe techniques, respectively. The films have been subjected to different annealing temperature in Argon (Ar) atmosphere. An increase in annealing temperature does not cause a complete phase transformation whereas it affects the crystallite size, dislocation density and strain. The optical band gap (Eg) of the as-deposited film is estimated to be 3.08 eV and decreases with increasing annealing temperature down to 2.43 eV at 773 K. The as-deposited and annealed films show typical semiconducting behaviour, dρ/dT > 0. Interestingly, the films annealed at 373 K, 473 K, and 573 K show two distinct temperature dependent regions of electrical resistivity; exponential region at high temperature, linear region at low temperature. The temperature at which the transition takes place from exponential to linear region strongly depends on the annealing temperature.  相似文献   

19.
This article describes the preparation of multi-walled carbon nanotube (MWCNT) chalcogenide glass composite by the melt-quenching technique. MWCNT composite (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples are characterized by the XRD, SEM and EDX. The electrical measurements were carried out in the temperature range of the 308-388 K. Cole–Cole plot has been used to determine the electrical conductivity at room temperature. It has been observed that MWCNT chalcogenide composite have higher value of electrical conductivity than pure glass. The results have been discussed on the basis of increased ionic conductivity (Ag+ ions) in MWCNT doped (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples.  相似文献   

20.
Jinbao Xu  Yun Liu  Ray L. Withers 《Solid State Ionics》2009,180(17-19):1118-1120
Multilayered BaTiO3(BTO)/Bi0.5K0.5TiO3 (BKT) thin films have been fabricated on Pt/Ti/SiO2/Si substrates using a metalloorganic decomposition process. XRD investigation of the resultant BTO/BKT multilayered thin films shows that they retain a perovskite-related structure type. They also exhibit a well-defined, polarization–electric field hysteresis loop with a measured remnant polarization (2Pr) of 5 µC/cm2 at an applied electric field of 250 kV/cm. The measured dielectric constant and dielectric loss at 10 kHz is 470 and 0.07 respectively. These multilayer BTO/BKT films maintain an excellent fatigue-free character even after 109 switching cycles. The mechanism associated with the enhancement of the electrical properties of the synthesized BTO/BKT films is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号