首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We present a study of the stability of n-vacancies (V (n)) and hydrogens in the hexagonal close-packed titanium system computed by means of first-principles calculations. In this work, performed by using the generalized gradient approximation of density functional theory, we focused on the formation energies and the processes of migration of these defects. In the first part, the calculated formation energy of the monovacancy presents a disagreement with experimental data, as already mentioned in the literature. The activation energy is underestimated by almost 20%. The stability of compact divacancies was then studied. We show that a divacancy is more stable than a monovacancy if their migration energies are of the same order of magnitude. We also predict that the migration process in the basal plane of the divacancy is controlled by an intermediate state corresponding to a body-centered triangle (BO site). The case of the trivacancies is finally considered from an energetic point of view. In the second part, the insertion of hydrogen and the processes of its migration are discussed. We obtain a satisfactory agreement with experimental measurements. The chemical nature of the interactions between hydrogen and titanium are discussed, and we show that the H-atom presents an anionic behavior in the metal. The trapping energy of hydrogen in a monovacancy as a function of the number of hydrogen atoms is finally presented.  相似文献   

2.
Employing a first-principles method based on the density function theory,we systematically investigate the structures,stability and diffusion of self-interstitial atoms(SIAs) in tungsten(W).The <111> dumbbell is shown to be the most stable SIA defect configuration with the formation energy of ~9.43 eV.The on-site rotation modes can be described by a quite soft floating mechanism and a down-hill "drift" diffusion process from <110> dumbbell to <111> dumbbell and from <001> dumbbell to <110> dumbbell,respectively.Among different SIA configurations jumping to near neighboring site,the <111> dumbbell is more preferable to migrate directly to first-nearest-neighboring site with a much lower energy barrier of 0.004 eV.These results provide a useful reference for W as a candidate plasma facing material in fusion Tokamak.  相似文献   

3.
刘汝霖  方粮  郝跃  池雅庆 《物理学报》2018,67(17):176101-176101
基于密度泛函理论的爬坡弹性带方法,对金红石相二氧化钛晶体中钛间隙、钛空位、氧间隙、氧空位4种本征缺陷的扩散特征进行了研究.对比4种本征缺陷在晶格内部沿不同扩散路径的过渡态势垒后发现,缺陷扩散过程呈现出明显的各向异性.其中,钛间隙和氧间隙沿[001]方向具有最小的扩散势垒路径,激活能分别为0.505 eV和0.859 eV;氧空位和钛空位的势垒最小的扩散路径分别沿[110]方向和[111]方向,激活能分别为0.735 eV和2.375 eV.  相似文献   

4.
钚因放射性衰变而出现老化效应.钚中点缺陷的性质和行为是理解钚老化效应的一个基础和前提.运用分子动力学模拟技术,计算了金属钚中点缺陷和点缺陷团簇的形成能和结合能.其中钚-钚、钚-氦和氦-氦相互作用势分别采用嵌入原子多体势、Morse对势和Lennard-Jones对势.计算结果表明,单个自间隙原子易以〈100〉哑铃状形态存在;间隙氦原子在理想晶格的八面体间隙位置相对较为稳定;氦原子与空位的结合能较大,在钚的自辐照过程中两者易于结合并形成氦-空位团簇;氦-空位团簇的形成能随氦原子数的增加而增大,当氦与空位的数  相似文献   

5.
C,N, O原子在金属V中扩散行为的第一性原理计算   总被引:2,自引:0,他引:2       下载免费PDF全文
杨彪  王丽阁  易勇  王恩泽  彭丽霞 《物理学报》2015,64(2):26602-026602
基于密度泛函理论, 采用第一性原理计算方法研究了C, N, O原子在金属V中的扩散行为. 首先, 讨论了C, N, O原子在V体心立方晶格中的间隙占位情况, 分析了其在间隙位置与V晶格的相互作用, 并探究了这种相互作用对金属V电子结构的影响. 研究结果表明: C, N, O原子在V的八面体间隙位置更为稳定, 并且C, N, O原子的2p电子与V的3d电子之间有比较强的成键作用; C, N, O原子的扩散势垒分别为0.89, 1.26, 0.98 eV, 并得出了其扩散系数表达式; 最后, 通过阿仑尼乌斯关系图对比了三者在V中扩散系数的大小, 并计算出体系温度在500–1100 K之间时其在V中的扩散系数, 计算结果与实验值基本符合.  相似文献   

6.
氧化锌中中性氮杂质第一性原理研究   总被引:1,自引:0,他引:1  
以第一性原理计算为基础,研究了氧化锌中中性氮杂质的原子和电子结构、缺陷形成能等.根据计算结果,氮杂质为深受主,因此对氧化锌的p型导电性没有贡献.在各种中性氮杂质中,替代氧位的氮有最低的形成能和最浅的受主能级,在富氧条件下替代锌位的氮的形成能次之.氮间隙在四面体位置不稳定,会自动弛豫到kick-out结构.尽管氮可能会占据八面体间隙位置,但由于形成能过高因此其浓度会较低.同时还讨论了各种掺杂情形下的电荷密度分布,得到了自洽的结果.  相似文献   

7.
The analytic embedded atom method (EAM) type many-body potentials of hcp rare earth metals (Dy, Er, Gd, Ho, Nd, Pr, and Tb) have been constructed. The hcp lattice is shown to be energetically most stable when compared with the fcc and bcc structure, and the hcp lattice with ideal c/a. The mechanical stability of the corresponding hcp lattice with respect to large change of density and c/a ratio is examined. The phonon spectra, stacking fault and surface energy are calculated. The activation energy for vacancy diffusion in these metals has been calculated and the most possible diffusion paths are predicted. Finally, the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites. This calculation suggests that the crowdion and basal split are the most stable configurations. The SIA formation energy increases linearly with the increase of the melting temperature.Received: 26 March 2003, Published online: 9 September 2003PACS: 34.20.Cf Interatomic potentials and forces - 66.30.Fq Self-diffusion in metals, semimetals, and alloys - 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters - 61.72.Bb Theories and models of crystal defects  相似文献   

8.
利用第一性原理密度泛函理论研究了铝和银在铱的111面的宽范围吸附特性。基于密度泛函理论计算了覆盖度在0.11ML到2.00ML的结构稳定性、原子构型及平均结合能。对于铝原子在铱111面的吸附,最稳定的结构是铝原子覆盖度为0.5ML位于密堆六方空位(hcp-hollow),相应的结合能为-4.68eV;对于亚层铝原子的吸附,最稳定结构是铝原子覆盖度为1.00ML时位于octahedral位置,相应的结合能为-5.28eV。对于覆盖度为2.00ML的满覆盖度混合结构的表层及亚层吸附,最稳定结构是Al位于六方密堆及八方密堆位置,相应的结合能为-4.70eV。这意味着当铝原子以满覆盖度吸附在铱的111面上时,趋向于在铱的111面的亚层形成化学键,而非吸附于表层。相比于铝吸附在铱111面,银的吸附特性呈现出很大的不同,面心位置更为稳定,在覆盖度为0.25ML时其结合能为3.89eV,略微高出密堆六方位置处3.88eV的结合能。  相似文献   

9.
Ab initio calculations based on density functional theory have been performed to study the dissolution and migration of helium, and the stability of small helium-vacancy clusters HenVm (n, m=0-4) in aluminum. The results indicate that the octahedral configuration is more stable than the tetrahedral. Interstitial helium atoms are predicted to have attractive interactions and jump between two octahedral sites via an intermediate tetrahedral site with low migration energy. The binding energies of an interstitial He atom and an isolated vacancy to a HenVm cluster are also obtained from the calculated formation energies of the clusters. We find that the di- and tri-vacancy clusters are not stable, but He atoms can increase the stability of vacancy clusters.  相似文献   

10.
利用第一性原理密度泛函理论研究了铝和银在铱的111面的宽范围吸附特性。基于密度泛函理论计算了覆盖度在0.11ML到2.00ML的结构稳定性、原子构型及平均结合能。对于铝原子在铱111面的吸附,最稳定的结构是铝原子覆盖度为0.5ML位于密堆六方空位(hcp-hollow),相应的结合能为-4.68eV;对于亚层铝原子的吸附,最稳定结构是铝原子覆盖度为1.00ML时位于octahedral位置,相应的结合能为-5.28eV。对于覆盖度为2.00ML的满覆盖度混合结构的表层及亚层吸附,最稳定结构是Al位于六方密堆及八方密堆位置,相应的结合能为-4.70eV。这意味着当铝原子以满覆盖度吸附在铱的111面上时,趋向于在铱的111面的亚层形成化学键,而非吸附于表层。相比于铝吸附在铱111面,银的吸附特性呈现出很大的不同,面心位置更为稳定,在覆盖度为0.25ML时其结合能为3.89eV,略微高出密堆六方位置处3.88eV的结合能。  相似文献   

11.
采用密度泛函理论框架下的第一性原理平面波赝势方法,对Al中分别加入H,O,N和He原子后的晶体状态进行了研究.通过晶体结构和形成能分析比较了杂质原子占据不同位置的难易程度及对晶体稳定性的影响,并从态密度、电荷密度和电荷布居的角度,分析了其电子结构.结果表明:H、O和N原子占据金属Al的四面体间隙最稳定,而He原子主要占据金属Al的八面体间隙. O和N原子与Al原子具有强烈的共价作用,H原子与Al原子存在共价作用但相对较弱,而He原子与Al原子的相互作用以范德华力为主.进一步揭示了四种原子在金属Al中不同行为的电子机制.  相似文献   

12.
The absorption and diffusion of oxygen in the Ti3Al alloy are studied by the projector augmented wave within the density functional theory. The highest absorption energies are shown to correspond to the sites in the octahedra formed by six titanium atoms, and the presence of aluminum in the nearest neighbors leads to a substantial decrease in the binding energy of oxygen in the alloy by approximately 1.5 eV. The energy barriers of oxygen diffusion between various interstices in the crystal lattice of the alloy are estimated, and the preferred migration paths in the (0001) plane and the [0001] direction are determined. It is found that the migration barrier from the most preferred octahedral O1 site to distorted tetrahedral Ti-site (2.42 eV) is a key barrier and limits the oxygen diffusion in the alloy. The calculated temperature diffusion coefficient of oxygen in the Ti3Al alloy and the activation energies determined in two directions agree with the experimental data.  相似文献   

13.
The atomic structure of several symmetrical tilt grain boundaries (GBs) in Cu and their interaction with vacancies and interstitials as well as self-diffusion are studied by molecular statics, molecular dynamics, kinetic Monte Carlo (KMC), and other atomistic simulation methods. Point defect formation energy in the GBs is on average lower than in the lattice but variations from site to site within the GB core are very significant. The formation energies of vacancies and interstitials are close to one another, which makes the defects equally important for GB diffusion. Vacancies show interesting effects such as delocalization and instability at certain GB sites. They move in GBs by simple vacancy-atom exchanges or by long jumps involving several atoms. Interstitial atoms can occupy relatively open positions between atoms, form split dumbbell configurations, or form highly delocalized displacement zones. They diffuse by direct jumps or by the indirect mechanism involving a collective displacement of several atoms. Diffusion coefficients in the GBs have been calculated by KMC simulations using defect jump rates determined within the transition state theory. GB diffusion can be dominated by vacancies or interstitials, depending on the GB structure. The diffusion anisotropy also depends on the GB structure, with diffusion along the tilt axis being either faster or slower than diffusion normal to the tilt axis. In agreement with Borisov's correlation, the activation energy of GB diffusion tends to decrease with the GB energy.  相似文献   

14.
The monovacancy formation energy of Co is measured as 1.91 eV from a trapping model analysis of theT-dependence of the lineshape parameter. Previously discussed linear relationships between trapping threshold temperature and monovacancy parameters are refined; these relationships can now be regarded as well-established.  相似文献   

15.
Using positron annihilation measurements we observed the formation of thermal vacancies in highly As and P doped Si. The vacancies start to form at temperatures as low as 650 K and are mainly undecorated at high temperatures. Upon cooling the vacancies form stable vacancy-impurity complexes such as V-As3. We determine the vacancy formation energy of E(f)=1.1(2) eV and the migration energy of E(m)=1.2(1) eV in highly doped Si. By associating these values with the vacancy-impurity pair, we get an estimate of 2.8(3) eV for the formation energy of an isolated neutral monovacancy in intrinsic Si.  相似文献   

16.
H K Sahu  S Srinivasan  K Krishan 《Pramana》1980,15(2):189-205
Computer simulation studies have been made to investigate the static properties of mono-, di- and tri-vacancy clusters and of self-interstitials in hcp magnesium in different configurations. Three interatomic potentials have been chosen for which the results have been compared. A crystallite containing about 1500 atoms and a model with the interatomic interaction extending upto the fourth neighbour distance have been used. Relaxation field, defect relaxation and formation energies, strength dipole tensors and relative changes in volume in the above defects have been computed and our final results compared with those of earlier workers. The formation energies of the defects are highly sensitive to the choice of the potential whose detailed structure guides the nature of relaxation and the dipole tensors. Calculations have been done for octahedral, tetrahedral and dumb-bell interstitials of which the last is found to be the most stable.  相似文献   

17.
硼/氮原子共注入金刚石的原子级研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李荣斌 《物理学报》2007,56(1):395-399
利用Tersoff势和分子动力学方法研究了室温下500 eV的能量粒子硼(4个)和氮(8个)共注入金刚石晶体中晶体结构的变化特征和缺陷分布特征.结果表明:粒子注入金刚石后产生的空位比间隙原子更靠近晶体的近表层分布;间隙原子主要以四面体间隙(T形)和哑铃状分裂间隙的形式存在于晶体中,T形间隙结构更容易存在,并且大部分间隙原子富集在空位的周围;注入金刚石中的硼原子和氮原子有78%左右处于替代位置,硼、氮原子之间的键长比完整金刚石结构的键长短13%,硼氮原子成键有利于减少金刚石晶格的畸变程度.  相似文献   

18.
We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction. Vacancy reduces charge density in its vicinity to induce C nucleation. A monovacancy is capable of trapping as many as four C atoms to form CnV (n=1,2,3,4) complexes. A single C atom prefers to interact with neighboring Cu at a vacancy with a trapping energy of 0.21 eV. With multiple C atoms added, they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment. For the CnV complexes, C2V is the major one due to its lowest average trapping energy (1.31 eV). Kinetically, the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.  相似文献   

19.
Ab initio calculations based on the Density Functional Theory are carried out in order to investigate the incorporation of iodine in uranium dioxide. The GGA+U approximation is used to describe the strong correlations of uranium 5f electrons. We studied several defects that are likely to accommodate the incorporation of iodine in the material, such as uranium and oxygen vacancies, divacancy and Schottky defects. We find the iodine atoms to be stable in a neutral Schottky defects, with an incorporation energy of -1.3 eV. This result may account for the solubility of iodine in uranium dioxide observed experimentally. We also notice that the incorporation of iodine involves steric and electronic contributions. The larger the defect iodine is incorporated in, the lower is its incorporation energy. Besides, we find iodine to be charged -1, thus getting the stable electronic configuration of rare gases. We also highlight the fact that the use of GGA+U increases the number of metastable states (non global energy minima), compared to the LDA/GGA approximations. Consequently, special care has to be taken on the 5f electronic occupancies in order to ensure that the absolute energy minimum has been reached.  相似文献   

20.
We report W(4?) surface core level shifts which yield new information on the energetics of the W(100) (1 × 1) → C(2 × 2)H phase transition. At small hydrogen coverages we find two co-existing surface core levels from atoms on normal lattice sites and from atoms in reconstructed domains. These surface levels are shifted to smaller binding energy (toward EF) by 0.35 eV and 0.13 eV relative to the bulk level, respectively. The most stable configuration is obtained at a fractional coverage θH ? 0.2, at which all surface atoms are shown to be paired with neighboring atoms in the surface plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号