首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应力诱发NiAl单晶马氏体相变的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
曹莉霞  尚家香  张跃 《物理学报》2009,58(10):7307-7312
利用嵌入原子势(EAM),对NiAl单晶在外应力作用下的动态拉伸过程进行了分子动力学模拟.应力-应变曲线分析以及原子构型分析表明外应力诱发NiAl合金发生了马氏体相变,原子结构由B2相转变为L10相.通过研究原子构型的演化过程,发现马氏体相变是通过多个{110}孪晶面的扩展和湮灭作用来完成的.同时探讨了马氏体相变的微观机理. 关键词: 马氏体相变 NiAl 分子动力学模拟  相似文献   

2.
Junwen Li 《Molecular physics》2015,113(3-4):274-281
We report first-principles simulation results for the electronic band structure of Si nanowires (SiNWs) aligned along the ?100? and ?110? directions with H, OH, and CH3 substituents passivating the surfaces. The ?100? wires studied have {110} faces and square cross-sections with diameters up to 1.73 nm, while the ?110? wires have {111} faces and diamond cross-sections with diameters up to 1.46 nm. We found that passivation using OH or CH3 groups reduced the band gaps compared to H-terminated ?100? SiNWs, and passivation using CH3 groups produced systems with indirect gaps for all ?100? SiNWs studied. All band gaps were direct in the ?110? SiNWs independent of passivation. The near-gap orbitals are greatly affected by the different substituents. We also found that the carrier effective masses of ?100? SiNWs are sensitive to the diameter and passivation, while those of ?110? SiNWs are not.  相似文献   

3.
The properties and structure of the martensitic phase of alloys with a near-stoichiometric equiatomic Ni50Mn50 composition, as well as martensitic transformations in them, are investigated in a wide temperature range by measuring the resistivity and thermal expansion coefficient and applying transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. It is found that Ni50Mn50 and Ni49Mn51 alloys experience the B2 → L10 highly reversible thermoelastic martensitic transformation and its related high-temperature deformation of the transformation and shape memory effect. Critical temperatures, volume (ΔV/V = ?1.7%) and linear size effects attributed to the direct and reverse martensitic transformations, and the high-temperature dependences of the martensitic and austenite lattice parameters are determined. It is found that the morphology of tetragonal L10 martensitic represents a hierarchy of thin coherent sheets of submicrocrystallites and nanocrystallites with plane near-{111}L10 habit boundaries, the crystallites being pairwise twinned according to the {111}〈11 $\bar 2$ L10 ∥ {011}〈-1 $\bar 1$ B2 twinning shear scheme.  相似文献   

4.
The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50–zGaz (0 ? z ? 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature–concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2M) martensite, and the 10M and 14M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011}B2. Martensite crystals are twinned along one of the 24 \(24\left\{ {011} \right\}{\left\langle {01\bar 1} \right\rangle _{B2}}\) “soft” twinning shear systems, which provides coherent accommodation of the martensitic transformation–induced elastic stresses.  相似文献   

5.
Methods of transmission electron microscopy were used to investigate the mechanisms of plastic deformation of TiNi(Fe, Mo) [001] crystals on compression in the interval of stress-induced martensitic transformations. It has been revealed that the formation of {113} and {114} twins of the В2-phase by the В19′→В2 reverse martensitic transformation over another path is, alongside with mechanical (100) twinning of В19′ martensite, an important deformation mechanism in this interval.  相似文献   

6.
Dislocations are thought to be the principal mechanism of high ductility of the novel B2 structure intermetallic compounds YAg and YCu.In this paper,the edge dislocation core structures of two primary slip systems 〈100 〉{010} and 〈100 〉 {011} for YAg and YCu are presented theoretically within the lattice theory of dislocation.The governing dislocation equation is a nonlinear integro-differential equation and the variational method is applied to solve the equation.Peierls stresses for 〈100 〉 {010} and 〈100 〉 {011} slip systems are calculated taking into consideration the contribution of the elastic strain energy.The core width and Peierls stress of a typical transition-metal aluminide NiAl is also reported for the purpose of verification and comparison.The Peierls stress of NiAl obtained here is in agreement with numerical results,which verifies the correctness of the results obtained for YAg and YCu.Peierls stresses of the 〈100 〉 {011} slip system are smaller than those of〈100 〉 {010} for the same intermetallic compounds originating from the smaller unstable stacking fault energy.The obvious high unstable stacking fault energy of NiAl results in a larger Peierls stress than those of YAg and YCu although they have the same B2 structure.The results show that the core structure and Peierls stress depend monotonically on the unstable stacking fault energy.  相似文献   

7.
罗礼进  仲崇贵  方靖淮  赵永林  周朋霞  江学范 《物理学报》2011,60(12):127502-127502
运用基于密度泛函理论的第一性原理的投影缀加波方法,对Hg2CuTi型Mn2NiAl在由立方结构至四方结构的畸变过程中电子结构和磁性的变化规律及其对压力响应的规律进行了研究.研究发现:在由奥氏体相到马氏体相的相变中,由于Ni-Mn(A)原子间距的减小而使得杂化程度增强,导致占据态的态密度向低能区域移动,体系的能量降低,致使在马氏体相中的稳定性增大;在从奥氏体相到马氏体相的相变中,能带变宽,成键作用加强,从而在马氏体相中的稳定性增大;在四方畸变过程中,总磁矩的变化主要来源于Ni原子磁矩的变化;计算得到Mn2NiAl的零压体积弹性模量为125.69 GPa,其抗压缩性比其他常见的Heusler型合金弱. 关键词: 第一性原理 电子结构 磁性 四方畸变  相似文献   

8.
Roy  A. M. 《JETP Letters》2020,112(3):173-179

A phase-field model for the phase transition between austenite and martensite and twinning between two martensitic variants is presented from our previous theory [1] with the main focus on the influence of interfacial stress that is consistent with the sharp interface limit. Each variant-variant transformation can be represented by only one order parameter. Thus, it allows us to get the analytical solution of interface energy and width. Coupled phase-field and elasticity equations are solved for cubic-to-tetragonal phase transformation in NiAl shape memory alloy. The effects of interfacial stress are studied for martensite-martensite interfaces in detail, which was absent in [1]. Additionally, stress and temperature-induced growth of the martensitic phase inside austenite and twining are simulated. Some of the nontrivial experimentally observed microstructures reproduced in the simulations [1] are analyzed in detail. It includes tip splitting and bending, and twins crossing. This theory can be extended for electric, reconstructive, and magnetic phase transformations.

  相似文献   

9.
ABSTRACT

The first principles calculations of structural and magnetic properties of the Heusler material Mn2NiAl, have been studied using a full potential linearized augmented plane wave (FP-LAPW) within the density-functional theory (DFT). The phase stability of the cubic austenitic (L21) structure for Mn2NiAl in both Cu2MnAl (Fm3?m space group) and Hg2CuTi (F43?m space group) type of structures with ferromagnetic and antiferromagnetic states, has been treated by applying the generalized gradient approximation proposed by Wu and Cohen (WC-GGA) alongside with the martensitic structure of Mn2NiAl. The analysis of phase stability, cohesive energy and the calculated formation enthalpy of Mn2NiAl reveal that the ferromagnetic MnMnNiAl is the most stable type of structure. Moreover, the calculated lattice parameters are found to be in good agreement with theoretical data. The variation of total magnetic moments MTB), MMnB), MNiB) and MAlB) in Mn2NiAl with pressure at varying temperature (0, 273 and 344?K), have been calculated.  相似文献   

10.
Yong Li 《中国物理 B》2022,31(8):87103-087103
The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.  相似文献   

11.
谭昌龙  蔡伟  田晓华 《中国物理》2006,15(11):2718-2723
In this paper a first-principles study of the electronic structure and stability of B2 TiDFT TiNiHf 电子结构 马氏体转化温度 平面波DFT, TiNiHf, electronic structure, martensitic transformation temperatureProject supported by the National Natural Science Foundation of China (Grant No 50471018).3/3/2006 12:00:00 AM6/7/2006 12:00:00 AMIn this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure.  相似文献   

12.
In this paper, by using the $G_{m,1}^{1,1}$-system, we study Darboux transformations for space-like isothermic surfaces in Minkowski space Rm,1, where $G_{m,1}^{1,1}=O(m+1,2)/O(m,1)×O(1,1)$.  相似文献   

13.
The liquid-solid Al/Ni diffusion couple was successfully fabricated by annealing at 1373?K for 48?h followed by water-quenching. Cross-sectional scanning and transmission electron microscopic analyses show that the multilayered diffusion zones comprise the following sequence of layers: γ-Ni(Al) | γ′-Ni3Al | β′-NiAl | Ni-rich β-NiAl | β-NiAl. The Ni-rich β-NiAl upon quenching undergoes a martensitic transformation from β (B2) to β′ (L10). The β′ martensite is found to be internally twinned on the {111}<112>system. The volume changes and strains due to martensitic phase transformation, the precipitation of γ′-Ni3Al from γ-Ni(Al) and lattice mismatch between Ni-rich β-NiAl and β-NiAl in the Al/Ni diffusion couple are quantitatively determined. The cuboidal γ′ phase coherently precipitates cube-on-cube in γ-Ni(Al). Composition fluctuations existing in the supersaturated solid solution γ-Ni(Al), provide sufficient driving force for the precipitation and facilitate nucleation and growth of the γ′ phase under isothermal annealing.  相似文献   

14.
Near-equiatomic NiTi shape memory alloys normally exhibit three martensitic transformations among three phases: the B2 phase, the monoclinic (M) phase and the rhombohedral (R) phase. Some recent work, however, has revealed complex transformation behaviour involving multiple-stage martensitic transformations and multiple-stage R-phase transformations. This paper presents an analysis of these complex transformation behaviours based on thermodynamic concepts of reversible and irreversible energies associated with the transformations. The analysis is successful in identifying all observed transformations and in defining relative positions of various stages of transformations on a temperature scale. It also defines positions of thermodynamically prohibited transformations as well as permitted transformations that have not been experimentally measured. Such identifications enable the determination of actual transformation hystereses that are not directly measured experimentally. Based on the thermodynamic principles adopted, the analysis also renders it possible to identify the possible causes that contribute to the complex multiple-stage transformation behaviour.  相似文献   

15.
The microstructure/texture evolution and strengthening of 316?L-type and 304?L-type austenitic stainless steels during cold rolling were studied. The cold rolling was accompanied by the deformation twinning and micro-shear banding followed by the strain-induced martensitic transformation, leading to nanocrystalline microstructures consisting of flattened austenite and martensite grains. The fraction of ultrafine grains can be expressed by a modified Johnson-Mehl-Avrami-Kolmogorov equation, while inverse exponential function holds as a first approximation between the mean grain size (austenite or martensite) and the total strain. The deformation austenite was characterised by the texture components of Brass, {011}<211>, Goss, {011}<100>, and S, {123}<634>, whereas the deformation martensite exhibited a strong {223}<110> texture component along with remarkable γ-fibre, <111>∥ND, with a maximum at {111}<211>. The grain refinement during cold rolling led to substantial strengthening, which could be expressed by a summation of the austenite and martensite strengthening contributions.  相似文献   

16.
L.E. Firment 《Surface science》1982,116(2):205-216
Temperature dependent faceting of rutile TiO2 surfaces cut to the (001) plane has been reported [Tait and Kasowski, Phys. Rev. B20 (1979) 5178]. By comparing LEED data to beam positions calculated for various sets of facet planes, the facet planes have been identified. The first ordered structure observed on annealing ion bombarded surfaces is composed of {011} facets with the facet planes in a (2 × 1) reconstruction. The high temperature structure produced on annealing above 1300K is best described as {114} facets; however, there are deviations of the observed LEED pattern from that calculated for {114} facets, possibly because of the presence of related planes. LEED data have now been obtained on the behavior of (110), (100), (011), (114), and (001) surfaces in UHV. The observed stability of TiO2 surfaces can be related to the Ti ion coordination numbers in the surface plane as derived from stoichiometric terminations of the rutile lattice.  相似文献   

17.
With NiMnCo and FeCoNi alloys as solvent metals, large single-crystal diamonds of about 3mm across are grown by temperature gradient method (TGM) under high temperature and high pressure (HPHT). Although both {100} and {111} surfaces are developed by a layer growth mechanism, some different characteristic patterns are seen clearly on the different surfaces, no matter whether NiMnCo or FeCoNi alloys are taken as the solvent metals. For {100} surface, it seems to have been melted or etched greatly, no dendritic patterns to be found, and only a large number of growth hillocks are dispersed net-likely; while for {111} surface, it often seems to be more smooth-faced, no etched or melted traces are present even when a lot of depressed trigonal growth layers. This distinct difference between {111} and {100} surfaces is considered to be related to the difference of surface-atom distribution of different surfaces, and {111} surfaces should be more difficult to be etched and more steady than {100} surfaces.  相似文献   

18.
New experiments on 1 keV 4He+ ion scattering from Ni {100} and Ni {100} (√2 × √2)R45°?O surfaces show azimuthal anisotropies attributable to variations in ion neutralisation probability for different ion trajectories relative to the position of the surface atoms. These effects are shown to be compatible with a simple localised ion-atom neutralisation mechanism. The results indicate that local neutralization is an important process in substrate shadowing in low energy ion scattering studies of adsorbate structures.  相似文献   

19.
Direct observation of current-induced propagation of purely transverse magnetic domain walls with spin-polarized scanning electron microscopy is reported in Fe30Ni70 nanowires. After propagation, the domain walls keep their transverse nature but switch polarity in some cases. For uniform Ni70Fe30 wires, the effect is random and illustrates domain-wall propagation above the Walker threshold. In the case of Ni{70}Fe_{30}/Fe wires, the transverse magnetization component in the wall is entirely determined by the polarity of the current pulse, an effect that is not reconciled by present theories even when taking into account the nonuniform Oersted field generated by the current.  相似文献   

20.
Metal foil targets were irradiated with 1 mum wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10;{19} W cm;{-2}, giving values of both Ilambda;{2} and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K_{alpha} emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with Ilambda;{2} and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号