首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对纳米晶Fe73.5Cu1Mo3Si13.5B9合金的原始制备态和各退火态样品进行了室温Mossbauer谱研究,结果表明晶化态的合金存在α-Fe(Si)微晶相和晶界的非晶相。晶相和非晶相内场和面积随退火温度的变化是退火时Cu,Mo,B等成分的扩散和在各相中的再分配引起的。最佳磁性能对应非晶相中的铁量占合金铁总量的30%左右,超微晶合金的双相无规各向异性模型表明,一定量的非晶相对保持纳米晶优异的软 关键词:  相似文献   

2.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

3.
In this paper, compact bulk nanocomposite Nd2Fe14B/α-Fe magnetic materials were prepared by hot extrusion of amorphous and nanocrystalline powders, which were prepared by high-energy ball-milling (HEBM) of the Nd2Fe14 B-type hard magnetic phase with 20 vol% of α-Fe as soft magnetic phase. The extrusion temperature has important influence on magnetic properties and microstructure of magnetic materials. The results show that the grain size of Nd2Fe14B and α-Fe phase increases steadily with increasing extrusion temperature. Furthermore, optimal extrusion temperature of 1223 K occurs, at which the highest magnetic properties and relative density can be obtained.  相似文献   

4.
Differential scanning calorimetry, X-ray diffraction and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The DSC profile of as-quenched Finemet showed two exothermic peaks at 530 and 702 °C, corresponding to two crystallization processes. The Finemet alloy remains amorphous at 450 °C with one broad peak in XRD pattern and one broad sextet in Mössbauer spectrum. When the Finemet alloy was annealed at 550 °C, only well indexed body-center-cubic phase was detected. After being annealed at 650 and 750 °C, the XRD patterns showed the coexistence of α-Fe(Si) and Fe-B intermetallic phases with the increase in XRD peak intensities, indicating the growth of crystallites and the decomposition of Fe73.5Cu1Nb3Si13.5B9 alloy at elevated temperatures. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements.  相似文献   

5.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

6.
Ribbons of Pr5Fe77−xCrxB18 (x=0x=0, 1, 2, 2.5, 3, 4, 5) were produced by melt spinning and then annealed to develop an enhanced-remanence nanocrystalline magnetic material. These nanocomposites with Cr present a coercive field at least 50% higher than the Cr-free ones, which makes them promising materials for bonded magnets. Four different types of annealing were used in order to develop the nanocrystalline state and to optimize the magnetic properties of these alloys. The first was a conventional annealing, where the ribbons were wrapped in a tantalum foil and annealed in an argon atmosphere, but not encapsulated. The second was a flash annealing, where the ribbons were annealed by passing a current through them. The third was a conventional annealing in an external magnetic field. Finally, the fourth was a conventional annealing, where the ribbons were wrapped in a tantalum foil and encapsulated in quartz tubes with argon gas and then annealed. The annealed samples were studied by magnetic measurements, X-ray diffraction, scanning and transmission electron microscopy and atomic force microscopy. The best magnetic properties are found for Pr5Fe74Cr3B18, annealed by the fourth method, which resulted in the lowest oxygen content in the annealed nanocrystalline material as confirmed by scanning electron microscopy. The value for the coercive field for this composition is at least 50% higher than for the material without Cr (≈560 vs. ≈320 kA/m) and 40% higher than for the Nd2Fe14B/Fe3B nanocomposite with Cr. Curie temperature measurements and X-ray diffraction data showed that the main phases present in all the samples are Pr2Fe14B, Fe3B and α-Fe, Pr2Fe14B being the majoritary phase. From Curie temperature measurements it was also found that Cr atoms preferentially dissolve in the Fe3B phase.  相似文献   

7.
Fe5Si95 specimens with an enhanced solubility of Fe in Si by about twenty-one orders of magnitude relative to crystalline Si at room temperature were prepared by the inert gas condensation technique. The thermal stability of the Fe5Si95 sample was investigated by Mössbauer spectroscopy. The spectrum of the as-prepared Fe5Si95 exhibited a broadened many different iron sites in the sample. This material was thermal stable up to temperatures of 673k for one hour. After annealing at 773K for one hour, the intermetallic compound α-FeSi2 was formed in the annealed sample, probably via the precipitation process. The amount of the α-FeSi2 phase increased with the annealing temperature. No β-FeSi2 phase was observes in any of the annealed samples up to an annealing temperature of 1273K For one hour.  相似文献   

8.
Fe75Co6Zr9B10 amorphous alloy prepared by melt-spinning was annealed at various temperatures. The crystallization behavior and microstructure were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The three exothermal peaks in the DTA curve of Fe75Co6Zr9B10 amorphous alloy correspond to the formations of α-Fe and α-Mn type phases, the growth of BCC-Fe volume fraction at the expense of α-Mn and residual amorphous phase and the precipitations of Fe3Zr, etc. intermetallic compounds, respectively. The second exothermic peak is not influenced by heating rate, but it shifts to a higher temperature region with increasing preannealing temperature of Fe75Co6Zr9B10 alloy. The α-Mn type phase is metastable and its lattice parameter determined by TEM is 0.8830 nm. AFM images show the development of surface morphology of alloy after annealing. The particle size increases with increasing annealing temperature.  相似文献   

9.
Smooth Fe78Si10B12 thin films were prepared by r.f. sputtering with the very slow deposition rate of 0.59 nm/min. The as-deposited films were not fully amorphous, instead α-Fe(Si) nanocrystallites were found to be embedded in the amorphous matrix. The saturation magnetostriction λs of the as-deposited film is about 6.5 × 10−6. After annealing at 540 °C for 1 h in an ultrahigh vacuum (4.5 × 10−5 Pa), the fraction of α-Fe(Si) crystalline phase largely increased, and correspondingly the λs decreased to 4.5 × 10−7. Ripple domain structures were observed in the as-deposited film, while dense stripe domains were observed in the annealed sample, characterized by a very narrow domain width of 80 nm. (1 1 0) texture and island-like configuration of α-Fe(Si) nanocrystallites formed by the annealing treatment are responsible for the perpendicular anisotropy. For the as-deposited film, the magnetization curves increased linearly with the increase of the magnetic field, and showed the very small hysteresis. On the other hand, the annealed sample clearly showed a very steep jump near the origin, which is due to the switch process of the dense stripe domain.  相似文献   

10.
The work addresses the correlation between the phase composition and the magnetic characteristics of aligned Fe-filled multi-walled carbon nanotubes (Fe-MWCNTs) grown by pyrolysis of ferrocene on oxidized Si substrates. In a combinatorial approach we exploited the extremely high gradients of the technological parameters temperature and ferrocene flow across the surface of a substrate positioned close to the reactor wall to obtain a large variation in the structural and magnetic properties of the Fe-MWCNTs. In this way, we established several clear correlations between the Fe-filling phase composition and the overall magnetic characteristics of the aligned Fe-MWCNTs. The α-Fe rich samples, which possess a more ordered graphitic sheet structure, a higher degree of preferred crystalline orientation of the metal filling and much larger metal crystallites in comparison with the carbide-rich samples, show a much stronger magnetic anisotropy with easy axis perpendicular to the substrate and unusually high values of the coercive field Hc and the saturation field Hs. The changes in the measured saturation magnetisation Ms and the Hc values correlate well with the variation of the α-Fe content and the filling crystallinity. A special annealing treatment of the samples causes a distinct increase of the α-Fe quantity and an increase of the measured average grain size. The respective magnetic characteristics show a significant increase of the overall magnetic moment and decrease of the coercive field. The correlation between the structural and the magnetic characteristics of the annealed samples matches quite well the respective correlations in the case of as-deposited samples.  相似文献   

11.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

12.
Aging at room temperature (RT) and thermal annealing of Ag50Fe50 films prepared by coevaporation method have been studied by in situ Mössbauer spectroscopy. Coherently precipitated fcc-Fe due to the segregation of Fe has been observed after aging and annealing at temperatures below 157°C, and α-Fe precipitation occurs at higher annealing temperatures.  相似文献   

13.
The nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons has been studied in detail. Microstructural and ferromagnetic properties are examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimetry (DSC) and magnetization measurements. The Curie and crystallization temperatures are determined to be TC=665 K and Tx=750 K, respectively. The Tx value is in well agreement with DSC measurement results. XRD patterns had shown two metastable phases (Fe23B6, Fe3B) which were formed under in situ nanocrystallization process. These metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline (NC) phases of α-Fe(Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of NC ferromagnetism, which suggest the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.  相似文献   

14.
Permanent magnets, composition Nd4Fe96?x B x (x=10–21), were made by rapid quenching followed by crystallization. The effects of B concentration and annealing time on the magnetic properties and phase compositions were studied by Mössbauer spectroscopy and magnetic measurements. The stripping method was adopted to obtain the subspectral area of each Fe phase. Optimum magnetic properties are obtained for the composition Nd4Fe77B19 annealed at 670°C for 3 minutes. Then the remanence is 12.0 kGs, the intrinsic coercivity 3.2 kOe, and the maximum energy product 12.6 MGOe. The crystalline phases are Fe3B, Nd2Fe14B and α-Fe with volume percentages of 60%, 36%, and 4%, respectively.  相似文献   

15.
Rapidly solidified amorphous Fe68.5Si18.5Nb3B9Cu1 ribbon has been subjected to heat treatment at a temperature of 550 °C for different time periods. All the annealed ribbons show the precipitation of nanocrystalline Fe3Si phase from the amorphous phase. The estimated crystallite size from X-ray diffraction peak analysis was in the range of 15-25 nm. While the surface studies confirm the presence of a distribution of spherical nanostructures in amorphous matrix. Both magnetoimpedance and longitudinal permeability ratios are found to increase with annealing time, and attain a maximum value for 60 min annealed ribbon and decrease on further increase in the annealing time. The enhanced magnetic properties and magnetoimpedance on suitable heat treatment is attributed to the change of magnetic parameters such as anisotropy and magnetostriction, due to change in microstructure. Analysis of permeability and impedance data taken under similar conditions suggests a strong correlation between them.  相似文献   

16.
Amorphous soft magnetic ribbons Fe73.5−xCrxSi13.5B9Nb3Cu1 (x=1–5) have been fabricated by rapid quenching on a single copper wheel. The differential scanning calorimetry (DSC) patterns showed that the crystallization temperature of α-Fe(Si) phase is ranging from 542 to 569 °C, a little higher than that of pure Finemet (x=0). With the same annealing regime, the crystallization volume fraction as well as the particle size of α-Fe(Si) crystallites decreased with increasing Cr amount substituted for Fe in studied samples. Especially, the interesting fact is that the laminar structure of heat-treated ribbons on the surface contacted to copper wheel in the fabricating process has been firstly discovered and explained to be related to the existence of Cr in studied samples. The hysteresis loop measurement indicated that there is the pinning of displacement of domain walls. The giant magnetocaloric effect (GMCE) has been found in amorphous state of the samples. After annealing, the soft magnetic properties of investigated nanocomposite materials are desirably improved.  相似文献   

17.
CO2-induced crystallization of isotactic polypropylene (iPP) by annealing had been studied using differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). The iPP before annealed was in α-form and amorphous states. At lower temperatures by CO2 isothermal treatments, iPP chains crystallized from the amorphous phase and only one crystal form, i.e., α-form, was observed. At higher temperatures by CO2 isothermal treatments, both crystallization from the amorphous phase and thickening of existing crystal lamellae were observed. Moreover, light γ-form crystal appeared in the treated iPP. The crystalline lamellar thickness of iPP annealed at different CO2 pressures had been determined. Using the Gibbs–Thomson plot method, the equilibrium melting temperature was found to be 187.6°C.  相似文献   

18.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

19.
The amorphous ferromagnet Fe81B13.5Si3.5C2 (Metglas® 2605SC) has been investigated with Mössbauer spectroscopy. The hyperfine interaction parameters are studied between 80 and 300 K from which some characteristic properties are deduced. The behaviour of the amorphous alloy at higher temperatures has been studied by the room temperature spectra of annealed samples. After a structural relaxation process, a two step crystallization transformation is observed leading to Fe-Si alloy and Fe2(B, C). X-ray diffraction of samples annealed at higher temperatures reveals the presence of an orthorhombic Fe-B-Si phase of which the structure changes slightly with annealing temperature.  相似文献   

20.
陈岁元  刘常升  李慧莉  崔彤 《物理学报》2005,54(9):4157-4163
在CO2激光功率为50—300W、扫描速度为20mm/s、激光散光斑为20mm照射条件下 ,诱导非 晶Fe735Cu1Nb3Si135B9带中发生结构重组,产生定量纳米α-F e(Si)晶相形成双相组织结构材料. 利用穆斯堡尔谱研究了非晶Fe735C u1Nb3Si135B9合金激光纳米化的 超精细结构. 实验结果表明,激光诱导非晶 Fe735Cu1Nb3Si135B 9纳米化后,其超精细磁场的分布随 着激光功率变 化由单峰向双峰变化,在高功率辐照时, 出现了双峰分布,并且峰位向高场移动. 高激光 功率辐照非晶Fe735Cu1Nb3Si135B9合金纳米晶化相有四种超精细结 构,即2个超精细磁场较小的初晶相和2个超精细磁场较大的纳米晶化相. 其中超精细磁场较 大(17—25MA/m)的α-Fe(Si)相为DO3结构. 关键词: 激光 纳米晶α-Fe(Si) 735Cu1Nb< sub>3Si135B9')" href="#">非晶Fe735Cu1Nb< sub>3Si135B9 超精细结构 超精细磁场  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号