首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cooling rate effects on structure and thermodynamics of amorphous nanoparticles were studied in a spherical model using Molecular Dynamics (MD) method. The good equilibrium melts are cooling down by three different cooling rates in order to observe the cooling rate effects. We find that cooling rate effects on thermodynamic quantities such as potential energy and surface energy are more pronounced than those for static quantities. Microstructure of amorphous nanoparticles is analyzed via radial distribution function (RDF) and coordination number distributions. Relatively weak cooling rate effects on such quantities are found. Microstructure of surface and core of amorphous nanoparticles are analyzed.  相似文献   

2.
《Physics letters. A》2019,383(19):2290-2295
Cooling rate is critical in synthesizing nanoparticles (NPs), which determines the microstructure and the corresponding mechanical, thermal and electrical properties. This research, as the most initiative one, studies microstructure formation of three different sized high entropy alloy (HEA) NPs under three different cooling rates, employing molecular dynamics (MD). Through analysis of potential energy, “common neighbor analysis”, radial distribution function, and also the mean square displacement, it is found that phase transition temperature is independent of HEA NP size, and as cooling rate decrease, more amorphous atoms transform to fcc and hcp orders, which can alternate the mechanical and thermodynamic properties of the final structure. The Cr atoms are found to aggregate into one cluster inside the NP and also try to migrate to the surface of the HEA NP, due to the large diffusivity. This research provides new insights in the size dependency of the nanoparticles, which may motivate more applications in which the strong size dependency is not desirable.  相似文献   

3.
Structural properties of amorphous TiO2 spherical nanoparticles have been studied in models with different sizes of 2 nm, 3 nm, 4 nm and 5 nm under non-periodic boundary conditions. We use the pairwise interatomic potentials proposed by Matsui and Akaogi. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of an amorphous nanoparticle obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Moreover, we show the radial density profile in a nanoparticle. Calculations show that size effects on structure of a model are significant and that if the size is larger than 3 nm, amorphous TiO2 nanoparticles have a distorted octahedral network structure with the mean coordination number ZTi-O ≈6.0 and ZO-Ti ≈3.0 like those observed in the bulk. Surface structure and surface energy of nanoparticles have been obtained and presented.  相似文献   

4.
We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.  相似文献   

5.
Local icosahedral order and thermodynamics of simulated amorphous Fe   总被引:1,自引:0,他引:1  
Local icosahedral order and thermodynamics of amorphous Fe have been analyzed in detail for models containing 3000 atoms, which were obtained by the molecular dynamics (MD) method. Models were obtained by cooling from the melt. Local order in models has been analyzed by using the technique proposed by Honeycutt and Andersen; we found an existence of icosahedral order in the system. Moreover, structural properties of models were also studied via radial distribution function (RDF), static structure factor, mean atomic distances, coordination number and bond-angle distributions. Glass transition temperature, heat capacity and potential energy of the system were found in addition to the evolution of structure and mean-squared displacement (MSD) of atoms upon cooling from the melt toward the glassy state. We found the glass transition temperature of simulated liquid Fe via temperature dependence of potential energy and it is close to that observed previously in the literature, i.e. Tg≈1070 K. Calculations showed that structural properties of amorphous Fe models with the Pak-Doyama interatomic potential agreed well with the experimental data.  相似文献   

6.
采用常温、常压分子动力学模拟方法和FS(Finnis Sinclair)势 ,研究了在周期性边界条件下由 5 0 0个原子构成的液态Cu模型系统的凝固过程 ,考察了不同降温速率下Cu的凝固行为 ,得到了不同温度、不同冷却速率下Cu的双体分布函数 ;采用HA键型指数法统计了各种小原子团在不同温度下所占比例 ,采用键取向序分析了体系降温全过程的局域取向对称性 ,得到原子体系微观结构组态变化的重要信息 ;最后 ,利用能量分析的方法对体系微观结构的变化进行了说明 ,给出了液态Cu冷凝过程中微观结构转变的重要信息 .  相似文献   

7.
Electrical and optical properties of thin film of amorphous silicon nanoparticles (a-Si) are studied. Thin film of silicon is synthesized on glass substrate under an ambient gas (Ar) atmosphere using physical vapour condensation system. We have employed Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) to study the morphology and microstructure of this film. It is observed that this silicon film contains almost spherical nanoparticles with size varying between 10 and 40 nm. The average surface roughness is about 140 nm as evident from the AFM image. X-ray diffraction analysis is also performed. The XRD spectrum does not show any significant peak which indicates the amorphous nature of the film. To understand the electrical transport phenomena, the temperature dependence of dc conductivity for this film is studied over a temperature range of (300-100 K). On the basis of temperature dependence of dc conductivity, it is suggested that the conduction takes place via variable range hopping (VRH). Three-dimensional Mott's variable range hopping (3D VRH) is applied to explain the conduction mechanism for the transport of charge carriers in this system. Various Mott's parameters such as density of states, degree of disorder, hopping distance, hopping energy are estimated. In optical properties, we have studied Fourier transform infra-red spectra and the photoluminescence of this amorphous silicon thin film. It is found that these amorphous silicon nanoparticles exhibits strong Si-O-Si stretching mode at 1060 cm−1, which suggests that the large amount of oxygen is adsorbed on the surface of these a-Si nanoparticles. The photoluminescence observed from these amorphous silicon nanoparticles has been explained with the help of oxygen related surface state mechanism.  相似文献   

8.
李勇  李惠琪  夏洋  刘邦武 《物理学报》2013,62(19):198102-198102
采用原子层沉积方法在碳黑纳米颗粒表面分别沉积Al2O3, ZnO, TiO2和Pt, 成功制备出核-壳型纳米材料. 通过高分辨率透射电子显微镜、X射线光电子能谱仪、 能谱仪对材料的表面形貌、晶体结构、薄膜成分进行了表征和分析. 结果表明, 原子层沉积方法是制备核壳型纳米材料的理想方法. 此外, 还分析了采用原子层沉积方法沉积不同材料, 所生长的薄膜材料有单晶、多晶、非晶等多种存在形式的形成原因. 关键词: 原子层沉积 核-壳型纳米材料 碳黑纳米颗粒  相似文献   

9.
非晶态玻璃态高分子材料作为结构材料在工程领域应用广泛,其机械力学性能特别是屈服变形行为受到热处理、加载应变率和环境温度的影响.采用分子动力学模拟方法研究非晶态玻璃态高分子材料不同工况下的单轴拉伸变形,基于分子链缠结微结构的概念,阐明了非晶态玻璃态高分子材料屈服和应变软化过程的内在变形机制.结果表明,拓扑缠结具有较为稳定的空间结构,难以发生解缠,决定了非晶态高分子材料屈服后的软化平台.由相邻分子链的局部链段相互作用形成的次级缠结在一定外界条件下可发生破坏或重新生成,次级缠结微结构及其演化是非晶态高分子材料发生屈服及软化的内在物理原因.  相似文献   

10.
Anatase TiO2 nanoparticles incorporated DLC films were successfully deposited on single crystalline silicon substrates by the electrolysis of TiO2-methanol solution under ambient atmospheric pressure and low temperature. Anatase TiO2 nanoparticles were embedded into amorphous carbon matrix, forming the typical nanocrystalline/amorphous nanocomposite films, confirmed by transmission electron microscopy (TEM). TiO2 incorporation effectively increased the sp3-hybridized carbon concentration in the composite film, and further regulated the microstructure and surface morphology. Furthermore, the static contact testing completely displayed, TiO2 incorporation got the composite films super-hydrophilic, which fundamentally improved the wetting ability of DLC film.  相似文献   

11.
Two-dimensional Wigner microclusters in a semiconductor dot are studied. Their melting is investigated in detail and it is shown that, for typical mesoscopic clusters possessing a shell structure, melting occurs in two stages: orientational melting (rotation of the shells relative to one another) and total melting, where the shells start to overlap with one another and exchange particles. An example of a “magic” microstructure which has a triangular structure and melts in a single stage is presented. For this, the temperature dependences of various quantities characterizing cluster structure are investigated. The change in the distribution of cluster configurations over local minima of the potential energy with increasing temperature is investigated. At temperatures below the temperature of total melting, a cluster is always located near the configuration of a global minimum and, at temperatures above the temperature of complete melting, a cluster can be located with finite probability near configurations corresponding to various local minima of the potential energy. Fiz. Tverd. Tela (St. Petersburg) 41, 1499–1504 (August 1999)  相似文献   

12.
Slow structural relaxation ("aging") observed in many atomic, molecular, and polymeric glasses substantially alters their stress-strain relations and can produce a distinctive yield point. Using Monte Carlo simulation for a binary Lennard-Jones mixture, we have observed these phenomena and their cooling-rate dependences for the first time in an atomistic model system. We also observe that aging effects can be reversed by plastic deformation ("rejuvenation"), whereby the system is expelled from the vicinity of deep minima in its potential energy surface.  相似文献   

13.
The diffusion and aggregation of preformed Agn-clusters ( n = 2-9) deposited onto a highly oriented pyrolytic graphite (HOPG) substrate is studied by two-photon-photoemission (2PPE). The sample is irradiated with ultrashort laser pulse pairs and the kinetic energy of the emitted photoelectrons is analyzed in a magnetic bottle type time-of-flight spectrometer. During annealing of the sample from 100 K up to room temperature, nanoparticles are formed on the surface by diffusion and aggregation of the silver clusters. A steep increase of the total photoelectron yield at a sample temperature of about 150 K is explained by the excitation of plasmons in the silver nanoparticles. From the kinetic energy distribution of the photoelectrons we deduce a strong variation of the work function of the sample during the formation of the nanoparticles, which is attributed to a quantum size effect.  相似文献   

14.
Variations in the structure and kinetic properties of vitreous and amorphous Si400 nanoparticles upon heating from 300 to 1700 K are studied by molecular dynamics. The nanoparticle density increases with temperature and approaches the density of bulk solid silicon. A transition from a unimodal to a bimodal distribution of bond lengths is observed upon heating. This transition is more pronounced in the case of the vitreous nanoparticle. The average bond length in the amorphous nanoparticle is, as a rule, larger than that in the vitreous one, and the average number of bonds per atom is lower than that in the vitreous nanoparticle for nearly all studied temperatures. Negative values of the excess potential energy correspond to middle concentric layers of nanoparticles. Liquid layers form in the surface region of nanoparticles in the vicinity of the melting transition. A kinetic test indicating the beginning of nanoparticle melting is formulated.  相似文献   

15.
Microstructural properties of liquid and amorphous SiO2 nanoparticles have been investigated via molecular dynamics (MD) simulations with the interatomic potentials that have weak Coulomb interaction and Morse-type short-range interaction under non-periodic boundary conditions. Structural properties of spherical nanoparticles with different sizes of 2, 4 and 6 nm obtained at 3500 K have been studied through partial radial distribution functions (PRDFs), coordination number and bond-angle distributions, and compared with those observed in the bulk. The core and surface structures of liquid SiO2 nanoparticles have been studied in detail. We found significant size effects on structure of nanoparticles. Calculations also show that if the size is larger than 4 nm, liquid SiO2 nanoparticles at the temperature of 3500 K have a lightly distorted tetrahedral network structure with the mean coordination number ZSi-O≈4.0 and ZO-Si≈2.0 like those observed in the bulk. Moreover, temperature dependence of structural defects and SiOx stoichiometry in nanoparticles on cooling from the melt has been found and presented.  相似文献   

16.
纳米粒子与单晶硅表面碰撞的反弹机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
段芳莉  雒建斌  温诗铸 《物理学报》2005,54(6):2832-2837
应用分子动力学方法模拟了纳米粒子与单晶硅(001)表面碰撞、反弹飞离的现象,分析了粒子的反弹行为、基体弹性形变和塑性形变的原子构型特征,以及碰撞过程的能量转化.碰撞后单晶硅表面形成半球形的小坑,小坑周围的基体原子呈非晶态.碰撞过程中与颗粒相邻的基体原子立即非晶化,在非晶层外面基体以可恢复的(111)[110]滑移结构存储弹性形变能.在射入过程,基体发生压缩弹性形变;颗粒反弹时基体势能振荡下降,交替形成压缩形变构型和拉伸形变构型.射入过程中存贮的压缩弹性形变能的释放为颗粒提供了反弹、飞离的能量. 关键词: 碰撞 纳米粒子 单晶硅表面 分子动力学模拟  相似文献   

17.

The reliability of thermocouples with separation measuring junction in temperature measurement in the cooling process of hot steel plates with impingement jet has been investigated using direct and inverse finite element analysis (FEA). It is concluded that while the attachment of thermocouple wires on surface has negligible influence on surface temperature distribution during air cooling, the conduction of wires in a jet impingement water cooling process has significant effect on the measured temperature. The disturbance of the temperature field due to the introduction of a small hole for the installation of internal thermocouple has also been studied and showed similar but less pronounced effects to those of the surface measurement. An increased distortion of the temperature field is evident when the thermocouple is attached on the top surface directly above the bottom surface of hole.  相似文献   

18.
A new type of Co-C nanoparticles is synthesized from CH2Cl2 solution of Co4(CO)1 2 by heating up to 210 °C in a closed vessel. Transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) observation show that the particles are embedded in amorphous carbon and their average size is 12 nm. The radial structure function obtained from the extended X-ray absorption fine structure (EXAFS) of the Co K-edge absorption of the Co-C nanoparticles provides a Co-C average distance of 2.08 Å and the Co-Co distances of 3.18 Å and 3.9 (±0.2) Å. The particles exhibit the magnetic hysteresis curve with a coercive force of 200 Oe at 20 K and 260 Oe at 300 K. The temperature dependence of the magnetic susceptibility measured under zero-field cooling and 10 Oe field cooling conditions exhibits the behavior characteristic of a set of single magnetic domain nanomagnets in an amorphous carbon matrix.  相似文献   

19.
Glass formation in simple monatomic nanoparticles has been studied by molecular dynamics simulations in spherical model with a free surface. Models have been obtained by cooling from the melt toward glassy state. Atomic mechanism of glass formation was monitored via spatio-temporal arrangement of solid-like and liquid-like atoms in nanoparticles. We use Lindemann freezing-like criterion for identification of solid-like atoms which occur randomly in supercooled region. Their number grows intensively with decreasing temperature and they form clusters. Subsequently, single percolation solid-like cluster occurs at temperature above the glass transition. Glass transition occurs when atoms aggregated into this single percolation cluster are in majority in the system to form relatively rigid glassy state. Solid-like domain is forming in the center of nanoparticles and grows outward to the surface. We found temperature dependence of potential energy, mean-squared displacement (MSD) of atoms, diffusion constant, incoherent intermediate scattering function, radial distribution function (RDF), local bond-pair orders detected by Honeycutt-Andersen analysis, radial density profile and radial atomic displacement distributions in nanoparticles. We found that liquid-like atoms in models obtained below glass transition have a tendency to concentrate in the surface layer of nanoparticles. However, they do not form a purely liquid-like surface layer coated nanoparticles.  相似文献   

20.
在真空环境中,采用脉冲激光烧蚀技术,分别在衬底加温和室温条件下沉积制备了纳米Si薄膜.对在室温条件下制备得到的非晶Si薄膜,采用后续热退火实现其晶化.通过扫描电子显微镜、Raman散射仪和X射线衍射仪对制备的薄膜形貌、晶态成分进行表征,得到两种情况下纳米Si晶粒形成的阈值温度分别为700 ℃和850 ℃,通过定量计算比较了两种情况下晶粒成核势垒的大小,并从能量角度对阈值温度的差别进行了理论分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号