共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Koji Hagihara Michiaki Yamasaki Masahito Honnami Hitoshi Izuno Masakazu Tane Takayoshi Nakano 《哲学杂志》2015,95(2):132-157
Formation of curious deformation bands has been reported as one of the deformation mechanisms occurring in an Mg-based long-period stacking ordered (LPSO) phase. The origin of the deformation band is still unknown, and the possibility of the deformation kink band and/or the deformation twin has been discussed. To clarify this, the crystallographic nature of deformation bands formed in the LPSO phase was examined by scanning electron microscope–electron backscatter diffraction (SEM-EBSD) pattern analysis. The results were compared to those of the deformation kink bands formed in hcp-Zn and deformation twins formed in hcp-Mg polycrystals. The deformation bands in the LPSO phase was confirmed not to exhibit a fixed crystal orientation relationship with respect to the matrix, different from the case shown in the deformation twin. Instead, the deformation band in the LPSO phase showed three arbitrariness on its crystallographic nature: an ambiguous crystal rotation axis that varied on the [0 0 0 1] zone axis from band to band; an arbitral crystal rotation angle that was not fixed and showed relatively wide distributions; and a variation in crystal rotation angle depending on the position even within a deformation band boundary itself. These features were coincident with those observed in the deformation bands formed in Zn polycrystals, suggesting that the formed deformation bands in LPSO phase crystals are predominantly deformation kink bands. 相似文献
3.
运用分子动力学方法,研究了金属铜单晶中不同形状的Frank位错环演化形成的各种类层错四面体稳定构型.对其形成过程的细致分析表明,这些稳定构型都可以用统一的位错分解和位错反应过程来解释.模拟结果表明,在零温下各种Frank位错环存在各自的临界尺寸,小于临界尺寸的Frank位错环不能长成类层错四面体结构.对梯形、六边形等Frank位错环演化过程的模拟表明,在形成稳定类层错四面体的过程中,存在位错生长和回缩的振荡现象.振荡现象是由于位错间的排斥和吸引相互作用不同步或弹性波传播的延迟效应引起的.关键词:层错四面体位错分子动力学 相似文献
4.
5.
6.
Especially with respect to high Mn and other austenitic TRansformation and/or TWinning Induced Plasticity (TRIP/TWIP) steels, it is a current trend to model the stacking fault energy of a stacking fault that is formed by plastic deformation with an equilibrium thermodynamic formalism as proposed by Olson and Cohen in 1976. In the present paper, this formalism is critically discussed and its ambiguity is stressed. Suggestions are made, how the stacking fault energy and its relation to the formation of hexagonal ?-martensite might be treated appropriately. It is further emphasized that a thermodynamic treatment of deformation-induced stacking fault phenomena always faces some ambiguity. However, an alternative thermodynamic approach to stacking faults, twinning and the formation of ?-martensite in austenitic steels might rationalize the specific stacking fault arrangements encountered during deformation of TRIP/TWIP alloys. 相似文献
7.
B. Bhattacharya 《哲学杂志》2013,93(17):2227-2247
8.
The mechanism of low-temperature deformation in a fracture process of L12 Ni3Al is studied by molecular dynamic simulations.Owing to the unstable stacking energy,the [01ˉ1] superdislocation is dissociated into partial dislocations separated by a stacking fault.The simulation results show that when the crack speed is larger than a critical speed,the Shockley partial dislocations will break forth from both the crack tip and the vicinity of the crack tip;subsequently the super intrinsic stacking faults are formed in adjacent {111} planes,meanwhile the super extrinsic stacking faults and twinning also occur.Our simulation results suggest that at low temperatures the ductile fracture in L12 Ni3Al is accompanied by twinning,which is produced by super-intrinsic stacking faults formed in adjacent {111} planes. 相似文献
9.
Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, vapour deposition at low temperatures and by depressurizing high-pressure forms of ice. Its structure differs from that of common hexagonal ice Ih in the order its molecular layers are stacked. This stacking order, however, typically has considerable disorder; that is, not purely cubic, but alternating in hexagonal and cubic layers. In time, stacking-disordered ice gradually decreases in cubicity (fraction having cubic structure), transforming to hexagonal ice. But, how does this disorder originate and how does it transform to hexagonal ice? Here we use numerical data on dislocations in hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be viewed as fine-grained polycrystalline ice with a high density of extended dislocations, each a widely extended stacking fault bounded by partial dislocations, and (2) the transformation from ice Ic to Ih is caused by the reaction and motion of these partial dislocations. Moreover, the stacking disorder may be in either a higher stored energy state consisting of a sub-boundary network arrangement of partial dislocations bounding stacking faults, or a lower stored energy state consisting of a grain structure with a high density of stacking faults, but without bounding partial dislocations. Each state transforms to Ih differently, with a duration to fully transform that strongly depends on temperature and crystal grain size. The results are consistent with the observed transformation rates, transformation temperatures and wide range in heat of transformation. 相似文献
10.
11.
12.
本文利用低温力学测试系统研究了电化学沉积纳米晶Ni在不同温度和宽应变速率条件下的压缩行为. 借助应变速率敏感指数、激活体积、扫描电子显微镜及高分辨透射电子显微镜方法, 对纳米晶Ni的压缩塑性变形机理进行了表征. 研究表明, 在较低温度条件下, 纳米晶Ni的塑性变形主要是由晶界位错协调变形主导, 晶界本征位错引出后无阻碍的在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 并且, 在协调塑性变形时引出位错的残留位错能够增加应变相容性和减小应力集中; 在室温条件下, 纳米晶Ni的塑性变形机理主要是晶界-位错协调变形与晶粒滑移/旋转共同主导. 利用晶界位错协调变形机理和残留位错运动与温度及缺陷的相关性揭示了纳米晶Ni在不同温度、不同应变速率条件下力学压缩性能差异的内在原因. 相似文献
13.
金属材料的动态塑性变形行为是一个多尺度的瞬变动力学过程,是物理学、力学以及材料科学等学科的交汇点,相关研究对工程应用具有重要的指导意义。动态载荷作用下,微观层面单个缺陷行为与介观层面缺陷群的集体演化行为交织在一起,导致金属材料呈现复杂的宏观力学现象。已有研究表明,金属材料的动态塑性变形与准静态变形存在显著差异,并且受到诸多内部及外部因素的影响。近几十年来,人们发展了位错动力学方法研究金属材料的动态塑性变形。但是由于动态变形问题的复杂性,对动态塑性变形的认识仍然存在不足。本文从计算方法和变形理论两个方面对该领域国内外发展历史及重要进展进行了回顾,以期为动态塑性变形研究提供有益的参考。
相似文献14.
The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic(MD) simulation method.The result shows that the yield strength of nanotwinned Al decreases with the increase of twin spacing,which is related to the repulsive force between twin boundary and the dislocation.The result also shows that there is no strain-hardening at the yield point.On the contrary,the stress is raised by strain hardening in the plastic stage.In addition,we also investigate the effects of stacking fault thickness and temperature on the yield strength of the Al nanowire.The simulation results indicate that the stacking fault may strengthen the Al nanowire when the thickness of the stacking fault is below a critical value. 相似文献
15.
In this paper, the generalized stacking fault (GSF) energies in different slip planes of TiN and MgO are calculated using highly reliable first-principles density functional theory (DFT) calculations. During DFT calculations, the issue of different ways to calculate the GSF energetics in ceramic materials containing more than one element was addressed and applied. For 〈1?1?0〉/{1?1?1} slip, a splitting of saddle point in TiN was observed. For 〈1?1?2〉/{1?1?1} slip, a stable stacking fault at a0/3〈1?1?2〉 displacement was formed in TiN. For synchroshear mechanism where the slip was accompanied by a cooperative motion of the interfacial nitrogen atoms within the slip plane, a second stable stacking fault was formed at a0/6〈1?1?2〉 displacement. The energy barrier for the shuffling of nitrogen atoms from one state to another is calculated to be 0.70 eV per atom. In contrast, such features are absent in MgO. These differences highlight the influence of complex bonding nature (mixed covalent, ionic, and metallic bondings) of TiN, which is substantially different than that in MgO (simple ionic bonding) on GSF shapes. 相似文献
16.
Shuozhi Xu Jaber R. Mianroodi Abigail Hunter Irene J. Beyerlein Bob Svendsen 《哲学杂志》2019,99(11):1400-1428
17.
利用分子动力学方法研究了单晶铜中不同大小的球形空洞在冲击波下的演化过程.模拟结果表明不同大小空洞的塌缩过程不同.模拟中冲击波由空洞左边扫向空洞右边.在较大尺寸的空洞塌缩过程中会产生系列的位错环.当空洞半径较小时,先在空洞的右侧形成位错环,当空洞半径增大到某一临界大小时,在空洞左右两侧同时产生位错环,当空洞半径较大时,先在空洞左侧形成位错环.当空洞左右两侧的位错环均形成以后,其右侧位错环前端的生长速度大于其左侧的.空洞半径增大,相应的位错环前端的生长速度变化不大.当空洞半径增大时,空洞中心指向位错源的矢量方关键词:纳米空洞位错环冲击波塑性变形 相似文献
18.
Morphology of single Shockley-type stacking faults (SFs) generated by recombination enhanced dislocation glide (REDG) in 4H–SiC are discussed and analysed. A complete set of the 12 different dissociated states of basal-plane dislocation loops is obtained using the crystallographic space group operations. From this set, six different double rhombic-shaped SFs are derived. These tables indicate the rules that connect shapes of SFs with the locations of partial dislocations having different core structures, the positions of slip planes in a unit cell, and the Burgers vectors of partial dislocations. We applied these tables for the analysis of SFs generated by the REDG effect reported in the past articles. Shapes, growing process of SFs and perfect dislocations for origins of SFs were well analysed systematically. 相似文献
19.
20.