首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱洁  苏垣昌  潘靖  封国林 《物理学报》2013,62(16):167503-167503
采用Monte-Carlo方法研究了高斯型非均匀应力对的铁磁薄膜磁化性质的影响.结果表明: 与易轴平行的拉应力和与易轴垂直的压应力能够增大系统的矫顽场, 而与易轴平行的压应力和与易轴垂直的拉应力则会减小系统的矫顽场.在矫顽场增大(减小)的同时, 系统还伴随着剩磁及其矩形度的增大(减小).更有意义的是, 在与易轴平行的压应力或与易轴垂直的拉应力作用下, 在应力的集中区域会出现“易轴旋转”的现象. 这种产生“易轴旋转”的应力集中区域的范围强烈地依赖于应力的强度和分布宽度. 关键词: 铁磁薄膜 非均匀应力 Monte-Carlo方法 磁滞回线  相似文献   

2.
邓金祥  陈光华 《中国物理》2000,9(6):459-463
The elastic strain energy and Gibbs free energy of cubic BN (cBN) thin film in biaxial stress field are calculated. The results show that the stress in cBN thin films has an impact on the formation of cubic phase. It is concluded that the high compressive stress in the cBN thin films is not the cause of cBN formation. This conclusion is different from that predicted by compressive stress model; however, it could well account for the experimental results. At a given substrate temperature, there is a compressive stress threshold, below which cBN phase is thermodynamically stable and above which hexagonal BN(hBN) phase is thermodynamically stable. At room temperature the compressive stress threshold is calculated to be 9.5 GPa.  相似文献   

3.
This paper investigates the major structural parameters,such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition,using an in-plane grazing incidence x-ray diffraction technique.The results are analysed and compared with a complementary out-of-plane xray diffraction technique.The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method.The method for directly determining the in-plane lattice parameters of the GaN layers is also presented.Combined with the biaxial strain model,it derives the lattice parameters corresponding to fully relaxed GaN films.The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established,reaching to a maximum level of-0.89 GPa.  相似文献   

4.
Stress evolution during deposition of amorphous Si and Ge thin films is remarkably similar to that observed for polycrystalline films. Amorphous semiconductors were used as model materials to study the origins of deposition stresses in continuous films, where suppression of both strain relaxation and epitaxial strain inheritance provides considerable simplification. Our data show that bulk compression is established by surface stress, while a subsequent return to tensile stress arises from elastic coalescence processes occurring on the kinetically roughened surface.  相似文献   

5.
Nanocrystalline ZnO:Al thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 450 °C to study their crystalline structure, composition, strain, stress, roughness characteristics and nonlinear optical susceptibility as a function of Al concentration (0, 2, 3, 5 at.%). The films were characterized by X-ray diffractometer (XRD), EDAX 9100 analyser, atomic force microscopy (AFM) and third harmonic generation (THG). The Al (3 at.%) doped ZnO thin films exhibited the lower strain/stress than undoped films. The nonlinear properties of the ZnO:Al thin films have been found to be influenced by the films strain/stress.  相似文献   

6.
The stress-strain curves were obtained at the stage of microdeformation of polycrystals of the solid solutions Cu-Ni, Cu-Zn, Cu-Al, and Cu-Ge. It was demonstrated that the shape of the stress-strain curves below the yield point depends on the concentration, the distribution of atoms of alloying elements, the properties of the components of the alloy, and on the size of grain. The dependence of the modulus of strain hardening on the composition of the alloys and on the grain size was analyzed. It was concluded that the magnitude of the modulus of strain hardening at the initial stage of microdeformation is determined by the character of the involvement of the individual grains in plastic deformation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 86–92, December, 1972.  相似文献   

7.
The Dewetting of thin polymer films (60–300 nm) on a non-wettable liquid substrate has been studied in the vicinity of their glass transition temperature. In our experiment, we observe a global contraction of the film while its thickness remains uniform. We show that, in this case, the strain corresponds to simple extension, and we verify that it is linear with the stress applied by the surface tension. This allows direct measurement of the stress/strain response as a function of time, and thus permits the measurement of an effective compliance of the thin films. It is, however, difficult to obtain a complete viscoelastic characterization, as the short time response is highly dependant on the physical age of the sample. Experimental results underline the effects of residual stress and friction when dewetting is analyzed on rigid substrates.  相似文献   

8.
Based on the phenomenological Landau-Devonshire theory, we investigate the effect of misfit strain on the electrocaloric effect of P(VDF-TrFE) copolymer thin films. Theoretical analysis indicates that the compressive misfit strain reduces the working temperature to a great extent where the electrocaloric effect is maximized, which is different from the result of the conventional ferroelectric thin films, such as BaTiO3. Although the compressive or tensile misfit strain does not change the maximum of the electrocaloric coefficient, the compressive misfit strain decreases the maximum of the adiabatic temperature change and the tensile misfit strain results in the opposite effect. Consequently, control of the misfit strain provides potential means to vary the working temperature for use in cooling systems.  相似文献   

9.
Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 °C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.  相似文献   

10.
Y. Liu  C. Zhang 《哲学杂志》2013,93(1):43-57
Abstract

This paper examines the thermoelectric behaviour of a thermoelectric thin film bonded to an elastic substrate. A calculation model for thermoelectric thin films is developed based on the singular integral equation method. The interface shear stress is found to exhibit singular behaviour at the ends of the films. Numerical results for the thermal stress distribution in the film and the film/substrate interface are obtained. Effects of film thickness and the substrate to film stiffness ratio on the stress of the film and the stress intensity factor of the interface are identified. The effects of interface electricity conductivity and the elastic–plastic deformation of the film are discussed.  相似文献   

11.
The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall–Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.  相似文献   

12.

Fatigue impairs the reliability of macroscopic metallic components utilized in a variety of technological applications. However, the fatigue behaviour of thin metal films and small-scale components used in microelectronics and mechanical microdevices has yet to be explored in detail. The fatigue behaviour in submicrometre thin films is likely to differ from that in bulk material, since the volume necessary for the formation of dislocation structures typical of cyclic deformation in bulk material is larger than that available in thin films. The thin-film dimensions and microstructure, therefore, affect the microscopic processes responsible for fatigue. The fatigue behaviour of Cu films 0.4, 0.8 and 3.0 µm thick on polyimide substrates was investigated. The specimens were fatigued at a total strain amplitude of 0.5% using an electromechanical tensile-testing machine. This work focuses on the characterization of fatigue mechanisms and the resulting fatigue damage of thin Cu films. Extrusions similar to those observed in bulk material were found at the film surfaces after cyclic loading. Voids observed beneath the extrusions, close to the film-substrate interface, contributed significantly to thin-film failure. Thinner films were more fatigue resistant and contained fewer and smaller extrusions than thicker films did. A small thickness appears to inhibit void nucleation. This observation is explained in terms of vacancy diffusion and annihilation at free surfaces or grain boundaries. Transmission electron microscopy investigations confirmed that no long-range dislocation structures have developed during fatigue loading of the films investigated.  相似文献   

13.
张耀平  许鸿  凌宁  张云洞 《应用光学》2006,27(2):108-111
残余应力是光学薄膜研究的一个重要组成部分,它对光学元器件有很大的影响。根据弹性力学原理,基于应变不匹配,提出了一种可以预测薄膜残余应力分配的理论模型计算方法,并将计算结果与干涉仪测量值进行了对比。利用所建立的模型分析了薄膜参数变化时基底残余应力的变化情况。结果表明:所建模型合理;随着镀膜温度的增加,基底总残余应力随镀膜温度升高而呈增大的趋势;本征应力变化不太大;随着基底厚度的减小,基底上下表面应力呈增大的趋势,而薄膜应力则呈减小趋势,但变化趋势很小。基底的中心轴约位于基底上表面以下2/3处。  相似文献   

14.
Zinc oxide thin films have been deposited on glass substrates at a substrate temperature of 673 K by spray pyrolysis. The samples are annealed in ambient atmosphere at various temperatures. The effect of annealing on structural, electrical, and optical properties of ZnO films has been investigated. X-ray diffraction patterns show that crystallinity of the ZnO films has been improved after annealing. The morphology of ZnO thin films is studied by atomic force microscopy. The tensile strain (compressive stress) is found to decrease with increase in annealing temperature which indicates the relaxation of tensile strain in ZnO thin films. A decrease in energy band gap is observed with increase of annealing temperature. The mechanism of blue-green luminescence of ZnO thin film has been analyzed. The resistivity is found to decrease with annealing temperature.  相似文献   

15.
The effect of small plastic deformation and subsequent free-state aging even under a load on microplastic deformation development in hcp polycrystals of substitutional solid solutions is investigated on Cu-Al and Cu-Ni alloys. It is established that in the temperature interval 77–300°K the effect of deformation pretreatment on subsequent microdeformation development is independent of the temperature at which it occurs, but is determined only by the temperature of secondary deformation. At the same time a clear correlation is observed between the change in the macroscopic elasticity limit and the shape of the microdeformation curve. If the macroscopic elasticity limit (σ″)after deformation pretreatment is larger than the friction strain (σ F), the stress-strain diagram is a second-order parabola, as in the case of annealed alloys. If the macroscopic elasticity limit after deformation pretreatment equals the friction strain, the shape of the curveσ=f (?) changes considerably. A stage of plastic deformation, on which the linear dependence ofσ on ?P is conserved, is observed on the stress-strain curves after the range of elastic deformation. The mechanism of microplastic deformation development in predeformed alloys is treated by the statistical theory of microdeformation of polycrystals.  相似文献   

16.
王歆钰  储瑞江  魏胜男  董正超  仲崇贵  曹海霞 《物理学报》2015,64(11):117701-117701
基于Laudau-Devonshire的热动力学模型, 计算了EuTiO3铁电薄膜材料的电热效应. 结果显示在外加应力的调控下, 电极化、电热系数以及绝热温差都会随之变化. 外加垂直于表面的张应力加大, 薄膜的相变温度升高, 绝热温差增加, 最大绝热温差所对应的工作温度向高温区移动. 对于二维平面失配应变um =-0.005的薄膜, 当外加张应力σ3 = 5 GPa时, 其最大电热系数为1.75×10-3 C/m2·K, 电场变化200 MV/m 时室温下绝热温差ΔT 的最大值可达到14 K 以上, 绝热温差ΔT ≥13 K 的工作温区超过120 K, 表明可以通过调控外部应力来获取室温时较大的绝热温差. 此结果预示着铁电EuTiO3 薄膜在室温固态制冷方面可能具有较好的应用前景.  相似文献   

17.
The mechanical stress effect on the crystallization behaviour of Ge2Sb2Te5(GST) thin films is carefully investigated by electrical resistance measurements. It is found that the crystallization temperature of GST films increases as external compressive stress is applied, while the crystallization temperature decreases under tensile stress. We also find that the uneven distribution of extrinsic stress can widen the span of transition temperature. These results clearly demonstrate that mechanical stress plays an important role during the crystallization process of GST films and may further influence the reliability and storage speed of relevant devices. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《Composite Interfaces》2013,20(6):507-520
The aim of this article is to provide a systematic method for performing experimental tests and theoretical evaluations on interfacial adhesion properties of the W/Al bilayer thin films interface. Samples W/Al bilayer thin films assembly is deposited on the quartz glass by using radio frequency magnetron sputtering. Based on the analysis of the experimental indentation data, the elastic modulus and hardness of the sample are investigated. The test results show that both of the values are easily influenced by the indentation depth. At the meantime, a finite element model is built to simulate the interface mechanical properties. The analysis shows that stress is mainly centralized close to the indenter and the maximum stress occurs in the lower layer Al film, not in the upper W film. The comparison between the experiment and the simulation shows the validity of the test and the modeling of each other to a certain extent. The investigation builds a basis for future work such as the fabrication of W/Al bilayer thin films for micro/nano manufacturing.  相似文献   

19.
The microdeformation behavior of polyamide-6 (PA6) oriented films is studied by X-ray diffraction at the early stages of reorientation at an angle of 45° to the direction of primary orientation. In the elastic strain range (up to 22%), the shear of crystallites and the rotation of fibrils take place simultaneously. The rotation is provided by the mutual slip of neighboring lamellas inside the fibrils.  相似文献   

20.
We shall refine the theory of microdeformation of polycrystals proposed earlier. The localization of glide and stress relaxation in plastically deformed grains along with the nonuniformity of the stress state is studied by the construction of a microdeformation curve. Laws of deformation hardening in the domain of microdeformation of polycrystals of solid solutions with fcc and bcc lattices are studied experimentally. Good agreement between theory and experiment is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号