共查询到6条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the Raman spectra of Bi2Te3 and Bi0.5Sb1.5Te3 thermoelectric films was investigated. The temperature coefficients of the Eg(2) peak positions were determined as –0.0137 cm–1/°C and –0.0156 cm–1/°C, respectively. The thermal expansion of the crystal caused a linear shift of the Raman peak induced by the temperature change. Based on the linear relation, a reliable and noninvasive micro‐Raman scattering method was shown to measure the thermal conductivity of the thermoelectric films. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
采用熔体旋甩法结合放电等离子烧结技术(MS-SPS)制备了p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12,研究了熔体旋甩工艺对微结构以及热电性能的影响规律.结果表明,较高的铜辊转速和较低的喷气压力有利于提高熔体的冷却速率,使带状产物晶粒细化.薄带经SPS烧结后得到致密、基本单相、晶粒尺寸均匀细小(150—300 nm)的块体.与传统方法制备的试样相比,MS-SPS试样虽然电导率有所降低,但因具有较大的Se
关键词:
熔体旋甩
p型填充式方钴矿化合物
微结构
热电性能 相似文献
3.
用多步固相反应法结合熔融法合成了单相的两种原子复合填充的p型方钴矿化合物Ba mCenFeCo3Sb12.并探索了两种原子复合填充对其热电性能的影响规 律,研究结果表明在相 同填充分数时BamCenFeCo3Sb12化合物的电导率介于单原子Bam FeCo3Sb12和CenFeCo3Sb12填 充的化合物之间,随Ba,Ce填充分数的增加,电导率下降;当填充分数相同时,两种原子复 合填充化合物的晶格热导率较单一原子填充化合物的晶格热导率低.
关键词:
方钴矿
双原子填充
电导率
晶格热导率 相似文献
4.
Phase transition and thermal expansion property of Cr_(2-x)Zr_(0.5x)Mg_(0.5x)Mo_3O_(12) solid solution 下载免费PDF全文
Compounds with the formula Cr2-xZr0.5xMg0.5xMo3O12(x = 0.0, 0.3, 0.5, 0.9, 1.3, 1.5, 1.7, 1.9) are synthesized, and the effects of Zr4+ and Mg2+ co-incorporation on the phase transition, thermal expansion, and Raman mode are investigated. It is found that Cr2-xZr0.5xMg0.5xMo3O12 crystallize into monoclinic structures for x 〈 1.3 and orthorhombic structures for x _〉 1.5 at room temperature. The phase transition temperature from a monoclinic to an orthorhombic structure of Cr2Mo3O12 can be reduced by the partial substitution of (ZrMg)6+ for Cr3+. The overall linear thermal expansion coefficient decreases with the increase of the (ZrMg)6+ content in an orthorhombic structure sample. The co-incorporation of Zr4+ and Mg2+ in the lattice results in the occurrence of new Raman modes and the hardening of the symmetric vibrational modes, which are attributed to the MoO4 tetrahedra sharing comers with ZrO6/MgO6 octahedra and to the strengthening of Mo-O bonds due to less electronegativities of Zr4+ and Mg2+ than Cr3+, respectively. 相似文献
5.
Materials with the formula Yb2-xAlxMo3O12 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffraction, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3012 solid solutions crystallize in a single monoclinic phase for 1.7 〈 x 〈 2.0 and in a single orthorhombic phase for 0.0 〈 x 〈 0,4, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhonlbic phase transition temperature of A12Mo3012 can be reduced by partial substitution of A13+ by Yb3+, and the Yb2-zAlxMo3012 (0.0 〈 x 〈 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of A13+ for Yb3+ in Yb2Mo3012 decreases its hygroscopicity, and the linear thermal expansion coefficients after complete removal of water species are measured to be -9.1 x 10-6/K, -5.5 x 10-6/K, 5.74 x 10-6/K, and 9.5 x 10 6/K for Ybl.sAlo.2(MoO4)3, Yb1.6Alo.4(MoO4)3, Ybo.4All.6(Mo04)3, and Ybo.2Al1.8(MoO4)3, respectively. 相似文献
6.
The phase transition,hygroscopicity, and thermal expansion properties of Yb<sub>2-x</sub>Al<sub>x</sub>Mo<sub>3</sub>O<sub>12</sub> 下载免费PDF全文
Materials with the formula Yb 2-xAlxMo3O12(x =0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffrac- tion, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3O12 solid solutions crystallize in a single monoclinic phase for 1.7 ≤ x ≤ 2.0 and in a single orthorhombic phase for 0.0 ≤ x ≤ 0.4, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhombic phase transition temperature of Al2Mo3O12 can be reduced by partial substitution of Al 3+ by Yb3+, and the Yb2-x AlxMo3O12 (0.0 < x ≤ 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of Al3+ for Yb3+ in Yb2Mo3O12 decreases its hygroscopicity, and the linear thermal expansion co- efficients after complete removal of water species are measured to be 9.1×10 6 /K, 5.5×10 6 /K, 5.74×10 6 /K, and 9.5 × 10 6 /K for Yb1.8 Al0.2 (MoO4)3 , Yb1.6Al0.4 (MoO4 )3, Yb0.4 Al1.6 (MoO4)3 , and Yb 0.2Al1.8 (MoO4)3 , respectively. 相似文献