首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new use of the thiol‐ene reaction to generate functional, redox‐tunable polymers is described. To illustrate the versatility of this approach, tailored divinyl ether monomers were polymerized with triethylene glycol dithiol to yield polymers containing either a carbonate or zwitterionic phosphocholine within the polymer backbone. Similarly, dithioerythritol was polymerized with triethylene glycol divinyl ether to yield a polymer with pendant diols and show how functional groups can be designed into either the divinyl ether or dithiol monomer. Using the thioether functional group inherent to this polymerization, all three polymers were selectively and quantitatively oxidized to either sulfoxides or sulfones by treatment with dilute hydrogen peroxide or mCPBA, respectively. With these illustrative examples, it is shown that the thiol‐ene polymerization is a broad‐reaching method to access a class of new redox‐active polymers which contain varied and dense functional‐group compositions.  相似文献   

2.
《Electroanalysis》2017,29(9):2167-2176
In this work a novel concept of monitoring of occurrence of redox reactions between conducting polymer nanospheres and redox species in a solution is proposed. The redox process is monitored in the emission mode (without wiring of the probe to an electrochemical measuring set‐up) as a change in emission spectrum of a dye (not participating in the redox process itself) but reporting the alteration of properties of highly sensitive conducting polymer nanoparticles. This approach is possible due to applied unique method of synthesis of conducting polymers nanospheres of highly active, unblocked surface. Thus the nanospheres redox state is affected by the solution redox potential, leading to change of their properties. If solvatochromic probe of sufficiently high brightness (pyrene) is present in nanospheres, a redox reaction between the conducting polymer and solution can be observed as change of emission spectrum of the probe. Thus a localized redox potential optical probe can be obtained. The emission properties of the dye incorporated were preserved in the nanospheres, moreover, the emission spectrum of the probe was affected by the change in redox potential of the solution, thus influencing the redox state and ultimately the properties of the conducting polymer. The emission changes observed were dependent on ion‐exchange properties of polypyrrole, i.e. depending on the dopant ions present in the polymer, the sensitivity of the optical probe can be tuned.  相似文献   

3.
The direct electropolymerization of benzene dissolved in the ionic liquid 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate was studied at room temperature applying the electrochemical quartz-crystal microbalance technique. Analysis of the damping changes showed that the Sauerbrey equation could be applied for data evaluation. In the polymer, every third to fourth benzene ring carried a positive charge in the oxidized state. During electropolymerization, some ionic liquid was absorbed in the growing polymer. The redox behavior was characterized by wide peaks typical for conducting polymers. Charge neutrality of the polymer during redox cycling was maintained by anion and cation exchange with the ionic liquid. With increasing scan rate, cation exchange became more and more important.  相似文献   

4.
Noncovalent functionalization of single‐walled carbon nanotubes (SWNTs) with conjugated polymers enhances SWNT processability and allows for selective dispersion of various SWNT species. Selective dispersions can be obtained by tuning the nature of the polymer, which can involve using various polymer backbones or side‐chains. However, a clear understanding of selectivity determinants is elusive, as the degree of polymerization (DP) has a large effect on SWNT selectivity. Additionally, preparing libraries of conjugated polymers with varying functionality while keeping DP consistent is difficult. Here, we report the utilization of a strained cyclooctyne‐containing conjugated polymer that serves as a versatile scaffold, enabling systematic preparation of a small library of conjugated polymers with different side‐chain functionality, while maintaining a consistent DP. The resulting polymers were used as dispersants for SWNTs, forming supramolecular polymer‐SWNT complexes that were characterized by UV‐Vis‐NIR absorption and Raman spectroscopy. In the series of polymers, we were able to probe the effect of small changes within the side chains, such as the incorporation of a carbonyl group or an aromatic unit, on the quality of the polymer‐SWNT dispersion. The results of these studies provide new insight into the factors that dictate the ability of a polymer to form strong interactions with SWNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2053–2058  相似文献   

5.
Degradable polyester‐based star polymers with a high level of functionality in the arms were synthesized via the “arms first” approach using an acetylene‐functional block copolymer macroinitiator. This was achieved by using 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate to initiate the ring‐opening polymerization (ROP) of caprolactone monomer followed by an atom transfer radical polymerization (ATRP) of a protected acetylene monomer, (trimethylsilyl)propargyl methacrylate. The hydroxyl end‐group of the resulting block copolymer macroinitiator was subsequently crosslinked under ROP conditions using a bislactone monomer, 4,4′‐bioxepanyl‐7,7′‐dione, to generate a degradable core crosslinked star (CCS) polymer with protected acetylene groups in the corona. The trimethylsilyl‐protecting groups were removed to generate a CCS polymer with an average of 1850 pendent acetylene groups located in the outer block segment of the arms. The increased functionality of this CCS polymer was demonstrated by attaching azide‐functionalized linear polystyrene via a copper (I)‐catalyzed cycloaddition reaction between the azide and acetylene groups. This resulted in a CCS polymer with “brush‐like” arm structures, the grafted segment of which could be liberated via hydrolysis of the polyester star structure to generate molecular brushes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1485–1498, 2009  相似文献   

6.
A new method of block polymer preparation using combined anionic and free radical polymerization was investigated. In the method the first monomer was polymerized anionically. The resulting polymeric anions were then reacted with an episulfide to form a polymer with mercaptan end-groups. This mercapto—polymer was mixed with a second monomer(s) in an inert solvent for the free radical polymerization. Conventional free radical initiation methods were used to initiate the polymerization of the second monomer but because of the high chain transfer constant of the mercaptan groups, a large number of the free radical chains would grow from the first polymer to form a block polymer. Block polymers difficult or impossible to make by direct anionic polymerization can thus be prepared. Several block polymers, including the new thermoplastic elastomers, poly[(styrene-co-acrylonitrile)-b-butadiene-b-(styrene-co-acrylonitrile)] and poly(bromostyrene-b-butadiene-b-bromostyrene) were prepared by this method.  相似文献   

7.
The turbidity oscillations of self-oscillating polymers in the Belousov-Zhabotinsky (BZ) reaction system depending on the crown ether receptors contained in the polymer network have been studied. The three monomers are copolymerized, namely, N-isopropylacrylamide, the metal catalyst monomer for the BZ reaction, and the crown ether receptor monomer, to prepare the self-oscillating polymers used in this study. The turbidity oscillations are characterized by monitoring the transmittance of the polymer solution in the BZ reaction system at a specific wavelength of 570 nm. The oscillations are varied by crown ether receptors used in the polymerization process, i.e., BCAm(6) or BCAm(5), for the selective recognition of specific cations between potassium and sodium ions in the solution. The selective recognition of the BCAm receptors in the polymer chain for the two ions has brought out a variation in the turbidity oscillations by a change in the hydrophilicity of the polymer chain. The oscillations of the polymer solution composed of the BCAm(5) receptor are more influenced by sodium ion, while the polymer solution of BCAm(6) receptor is affected by potassium ion. However, the oscillation patterns of the redox changes obtained by these solution systems look much alike despite the differences in the polymer chain by crown ether receptors and cations of bromate used for the BZ reaction.  相似文献   

8.
Nanocomposites of lead sulfide and several polymers, especially poly(ethyleneoxide), were prepared by coprecipitation of lead sulfide and polymer, followed by a drying and pressing procedure. Such nanocomposites consist of ca. 90% w/w (or ca. 50% v/v) lead sulfide, of particle dimensions of 2–40 nm. The refractive index of these materials is on the order of 3 and therefore, to the authors' best knowledge, is the highest reported for any polymer composite.  相似文献   

9.
In this study, a novel donor-acceptor type monomer was designed based on selenophene and benzotriazole with a bulky pendant group and synthesized through Stille coupling reaction. The monomer was polymerized electrochemically by using cyclic voltammetry and also chemically by oxidation in the presence of FeCl3. Both polymers were then compared in terms of their optical properties, electrochemical and spectroelectrochemical behaviors, kinetic and colorimetric properties and surface morphologies. Independent of the polymerization method, both electrochemically (E-PSeBTz) and chemically polymerized (C-PSeBTz) coatings showed quite similar properties. Both polymers have p-doping character and multichromic properties in their oxidized states. The polymers can be fully switched between their oxidized and neutral states in fairly short times with acceptable optical contrast at different wavelengths. Both polymers exhibit a λmax of 505?nm and the optical band gaps of the materials were found to be 1.85?eV and 1.80?eV for E-PSeBTz and C-PSeBTz, respectively.  相似文献   

10.
Redox‐active polymers enhanced the focus of attention in the field of battery research in recent years. Anthraquinone is one of the most generic redox‐active functional compounds for battery applications, because the quinonide structure undergoes a redox reaction involving two electrons and features stable electrochemical behavior. Although various redox‐active polymers have been developed, the polymer backbone is mostly based on linear alkyl chains [e.g., poly(methacrylate)s, poly(ether)s]. Polymers featuring ring structures in the backbone are limited due to the restricted availability of suitable polymerization techniques [e.g., poly(norbornene)s by ROMP]. The cyclopolymerization of dienes with pendant redox‐active anthraquinone moieties by Pd catalysis represents a novel approach to synthesize redox‐active polymers featuring cyclic structures in the backbone. Electrochemical investigations, in particular cyclic voltammetry, of these new diene monomer, polymers and the corresponding polymer supported carbon paper composites were conducted in different organic electrolytes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2184–2190  相似文献   

11.
The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.  相似文献   

12.
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria‐mediated iron‐catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal‐chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water‐soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate “unnatural” polymers in the presence of “host” cells, thus setting up the possibility of making natural–synthetic hybrid structures and conjugates.  相似文献   

13.
Wu D  Qin J  Lin B 《Lab on a chip》2007,7(11):1490-1496
A straightforward approach to generate a stable and protein-resistant poly(dimethylsiloxane) (PDMS) surface using self-assembled hydrophilic polymers is demonstrated in this work. Epoxy-modified polymers were directly adsorbed from aqueous solution onto plasma oxidized PDMS based on H-bond interaction, and epoxies of polymer and silanols on oxidized PDMS surface were crosslinked by heating at 110 degrees C. The coating process could be completed within half hour. Poly(dimethylacrylamide-co-glycidyl methacrylate) (PDMA-co-GMA), poly(vinyl pyrrolidone)-g-glycidyl methacrylate (PVP-g-GMA) and poly(vinyl alcohol)-g-glycidyl methacrylate (PVA-g-GMA) (D. P. Wu, B. X. Zhao, Z. P. Dai, J. H. Qin and B. C. Lin, Lab Chip, 2006, 6, 942) were employed as examples here. Unlike PDMA, PVP, and PVA themselves, these epoxy-modified hydrophilic polymers could be directly used as static surface coatings on oxidized PDMS, and inhibited electroosmotic flow (EOF) within pH 3-11. It was also found that hard baking of PDMS at 150 degrees C for 24 hours before surface coating could greatly retard surface hydrophobicity recovery after oxygen plasma exposure, which strengthened epoxy-modified polymer coatings on oxidized PDMS surface, and resulted in EOF less than 0.2 x 10(-4) cm(2) V(-1) s(-1) (pH 9.0) within two weeks. On epoxy-modified polymer coated PDMS microchips, basic proteins, peptides and DNA fragments could be separated satisfactorily, in which more than 2 x 10(4) plates per 2 cm and less than 3% RSD (>8 runs) for migration time were obtained for lysozyme.  相似文献   

14.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

15.
The process of excimer formation was studied for a series of pyrene end-labeled polystyrenes (PS(X)-Py 2 where X is the polymer molecular weight equal to 3, 4.5, 8, 12.7, and 14.6 K) and two series of polystyrenes randomly labeled with pyrene (CoE-PS and CoA-PS) in seven different solvents. The solvent viscosities ranged from 0.41 to 1.92 mPa x s, while the solvent quality ranged from good to poor solvents for polystyrene, as determined by intrinsic viscosity measurements. Steady-state fluorescence spectra of the pyrene-labeled polymers were acquired, and the excimer to monomer ratios showed that excimer formation increased strongly with a decrease in solvent viscosity. The monomer and excimer time-resolved fluorescence decays were also acquired and fitted globally to either the Birks' scheme or the fluorescence blob model (FBM) for the end- or randomly labeled polymers, respectively. All parameters reporting on the long-range polymer chain dynamics (LRPCD) obtained from the analysis of the fluorescence data acquired with the PS(X)-Py 2, CoE-PS, and CoA-PS series yielded virtually identical trends, demonstrating that these fluorescence experiments yield results that are internally consistent with one another. Considering the substantial advantages associated with the preparation and study of randomly labeled polymers, this report presents an appealing case for the use of randomly labeled polymers in the study of LRPCD.  相似文献   

16.
Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane (MDP) in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) has been achieved to afford a chain polyester (PMDP) with di-t-butyl peroxide (DTBP) as an initiator at 125°C. The polydispersity of the polymers decreases as the concentration of TEMPO is increased. At high TEMPO concentrations, the polydispersity as low as 1.2 was obtained, which is below the theoretical lower limit for a conventional free radical polymerization. A linear relationship between the number-average molecular weight (Mn) and the monomer conversion was observed with the best-fit line passing very close to the origin of the Mn-conversion plot. The isolated and purified TEMPO-capped PMDP polymers have been employed to prepare chain extended polymers upon addition of more MDP monomer. These results are suggestive of the “living” polymerization process. A possible polymerization mechanism might involve thermal homolysis of the TEMPO-PMDP bonds followed by the addition of the monomers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 761–771, 1998  相似文献   

17.
A new π-conjugated monomer was synthesized which contains an electron-donating unit 3,4-ethylenedioxythiophene and electron withdrawing quinoxaline-based heterocycle to examine the effects of imine unit on the optoelectronic and redox properties of the resulting polymer. Electroactivity of monomer and electrochemical redox behavior of its polymer were investigated by cyclic voltammetry. An irreversible anodic wave at +0.85 V vs Ag wire reference electrode corresponding to the monomer oxidation was observed. Spectroelectrochemical analysis revealed that the neutral polymer has an absorbance at 820 nm. The band gap of the polymer was determined as 1.0 eV from the onset of the π-π∗ transition. The polymer shows multi-colored electrochromic behavior with five distinct states: brick red (−0.3 V), orange (+0.4 V), brown (+0.7 V), green (+0.85 V), gray (+1.2 V). The polymer revealed 34% optical contrast at 460 nm and an excellent optical contrast of 99% in the NIR region.  相似文献   

18.
A new molecularly imprinted polymer (MIP) for levofloxacin was prepared by the combined use of methacrylic acid and protoporphyrin as functional monomers. The adsorption properties of resultant imprinted polymers were evaluated by equilibrium rebinding experiments. The highest binding capacity of levofloxacin achieved from the optimized imprinted polymer in acetonitrile was 246.26 µmol/g with an imprinting factor of 2.05. A ?uorescence quenching effect was observed when a protoporphyrin‐based imprinted polymer was incubated in the solutions of levofloxacin. The results indicated that the protoporphyrin‐based MIPs were able to create higher binding cavities for template compared with MIPs using only methacrylic acid as a functional monomer. It should be expected that the cooperative use of the protoporphyrin with supplemental different functional monomers may be an alternative to obtain MIP with the improvement of the selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Pyrrole, thiophene, and a mixture of the two monomers were electrochemically polymerized to investigate polymerization rates and the morphology change of the polymer matrix, and to improve the aging and cyclic voltammetric behaviors of the polymers. Thiophene was polymerized on a smooth surface of Pt electrode by two steps. The first step was controlled by electron transfer at the electrical double layer and the other by diffusion of the monomer reacting on the immobilized layer consisting of the precoated thiophene polymer. The electropolymerization rate of the second step was 1.85 × 10−4 cm3 mol−1 s−1, which is faster by 8.63 × 102 times than the first step. Some supporting electrolytes such as KPF6, LiClO4, TBAP, and TBABF4 were employed in the polymerization reaction to see the effects of dopant anions on the polymerization rate, and KPF6 was the fastest one at 2.41 × 10−6 cm s−1. However, owing to its sensitivity to oxygen, LiClO4 was used for the polymerization that is fairly stable in air and the same rate as KPF6. For the competitive polymerization reaction of the two monomers the rate of thiophene was found to be about 11 times slower than that of thiophene alone. When the starting concentration of the thiophene monomer was higher than pyrrole by five times, its portion in the composite polymer was found to be only 8–10%. However, this level gave desirable results in terms of redox properties and aging. The resistance against aging was explained by the morphology change, which came from great shrinking of its porosity. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
The historical development of our research on polycondensation that proceeds in a chain-growth polymerization manner ("chain-growth polycondensation") for well-defined condensation polymers is described. We first studied polycondensation in which change of the substituent effect induced by bond formation drove the reactivity of the polymer end group higher than that of the monomer. In this approach, well-defined aromatic polyamides, polyesters, polyethers, and poly(ether sulfone)s were obtained. The second approach was the study of the phase-transfer polymerization of a solid monomer dispersed in an organic solvent. In this type of polymerization, the solid monomer was physically unable to react with another monomer and was carried with the phase transfer catalyst into the solution phase where it reacted with an initiator and the polymer end group in the solvent in a chain polymerization manner. We also found catalyst-transfer polycondensation as a third approach to chain-growth polycondensation. In the Ni-catalyzed polycondensation of 2-bromo-5-chloromagnesiothiophenes, the Ni catalyst transferred to the polymer end group, and a coupling reaction occurred there to yield a well-defined polythiophene. This chain-growth polycondensation was applied to the synthesis of condensation polymer architectures such as block copolymers, star polymers, graft copolymers, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号