首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Magneto-structural properties of films of diluted ferromagnetic alloys NixCu1−x in the concentration range 0.7<x<1.00.7<x<1.0 are studied experimentally. Films deposited by magnetron sputtering show partial phase separation, as evidenced by structural analysis and ferromagnetic resonance measurements. The phase diagram of the NixCu1−x bulk system is obtained using numerical theoretical analysis of the electronic structure, taking into account the interatomic exchange interactions. The results confirm the experimentally found partial phase separation, explain it as magnetic in origin, and indicate an additional metastable region connected with the ferromagnetic transition in the system.  相似文献   

3.
The preferred state in an interface is the key to evaluating misfit strain, especially for the interphase interfaces in secondary preferred state. The structure of good matching site (GMS) in a GMS clusters offers a guidance for the preferred state, especially for identifying the coincidence site lattice in two dimension for secondary preferred state and the Burgers vectors in a large misfit system. Here, we combine the GMS with O-lattice theory to calculate the secondary dislocation structure in the habit planes of the type II and III TiN precipitates in a Ni–TiN system. We find that under a slight elastic strain, the type III habit plane contains a single set of secondary dislocations, consistent with the experimental observation. The type II habit plane contains three sets of secondary dislocations, two of which can be relaxed to be nearly parallel and another of which may be invisible in diffraction contrast due to its short Burgers vector. The present study provides a reasonable interpretation to the observed interfacial dislocations, and also suggests Burgers vectors for the dislocations that are not determined experimentally.  相似文献   

4.
Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu–Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200?°C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300?°C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.  相似文献   

5.
K. Yu-Zhang  K. Han  A. Misra 《哲学杂志》2013,93(17):2559-2567
Multilayers of Cu–Nb have been grown on a Nb seed layer on a Si (100) substrate using a magnetron sputtering technique. The bilayer period (Λ) was varied from 10 to 2.4 nm. Cross-sectional transmission electron microscopy (XTEM) and high-resolution TEM (HRTEM) were used to study the detailed structure as a function of the bilayer period. Although the majority of the structures conformed to a Kurdjumov–Sachs (K–S) orientation relationship between the Cu and Nb layers, the structures exhibit considerable spatial variation. In some local regions, a Nishiyama–Wasserman (N–W) orientation relationship was found. In addition, considerable distortions were observed in both the Cu and Nb regions close to the interface. Using both HRTEM imaging and fast Fourier transform (FFT) of HRTEM images, early stage of the fcc to bcc transition in Cu was detected. The results suggest that, in multilayer structures, the detailed structure of the interface and large local distortions may play an important role in interface-controlled plasticity.  相似文献   

6.
Electron transport in nanoscale semiconductor structures is theoretically investigated to answer the question of whether or not the ballistic limit is really attainable under room temperature operation. The semiclassical Boltzmann transport equation is solved analytically under the relaxation time approximation for n(+)-n-n(+) test structures. We demonstrate that the solution of the Boltzmann transport equation exhibits a boundary layer structure near the potential barrier and thus the scatterings in the active region cannot be neglected even in nanoscale structures, as far as they are operated at room temperature under high applied voltages.  相似文献   

7.
This paper deals with the formation of Cu2ZnSnSe4 (CZTS) in the process of selenization of metal precursor layers in elemental selenium vapour. Metallic precursors were sequentially evaported from Sn, Zn and Cu sources. Precursor Sn–Zn–Cu films have a “mesa-like” structure and consist mainly of Cu5Zn8 and Cu6Sn5 phases. It was confirmed that the formation of different binary copper selenides is the dominating process of selenization in elemental Se vapour at temperatures up to 300 °C. The formation of kesterite CZTS films begins at 300 °C and dominates at higher temperatures, always resulting in multiphase films that consist of high-quality Cu2ZnSnSe4 crystals and of a separate phase of ZnSe.  相似文献   

8.
A series of Co–Cu films with different Co:Cu ratio was electrodeposited at different electrolyte pH, deposition potential and film thickness, and their morphology, crystal structure and magnetic properties were investigated. Compositional analysis by energy dispersive x-ray spectroscopy disclosed that the Co and Cu content were 75 and 25 wt%, respectively, at high pH (3.2) level, while for films at low pH (2.5) level the compositions are 61 Co and 39 wt% Cu, and further decrease of Co:Cu ratio occurred as the film thicknesses increased. The surface morphology of the films changed from an initial dendritic stage to expanded dendrites with increasing Cu content by the electrolyte pH. The dendrites became more obvious at 3 μm and the dendritic structures increased with further increase of film thickness as the Co:Cu ratio decreased. Hence, the increase of the Cu content is thought to be the cause of the increase of dentritic structure. Structural characterizations by x-ray diffraction (XRD) showed that all films have face-centered cubic structure. In the XRD patterns, the peak intensity of Co (111) is lower for the films grown at low pH compared to that of high pH, and the (111) peaks of Co and Cu slightly separated at 3 μm and then the intensity of the Cu (111) increased with increasing film thickness from 4 to 5 μm, so that the Co:Cu ratio changed at all deposition parameters. Magnetic measurements displayed that the saturation magnetization decreased and the coercivity increased as the Co:Cu ratio decreased with all deposition parameters. Also, the magnetic easy axis was found to be in the film plane for all films. It was seen that the variations in the properties of the films might be attributed to the change of Co:Cu ratio caused by the deposition parameters.  相似文献   

9.
A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)3Sn and (Cu,Ni)6Sn5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)6Sn5 to (Cu,Ni)3Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)3Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)6Sn5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.  相似文献   

10.
11.
Physics of the Solid State - The interaction of an electromagnetic radiation with electric dipole active spin modes in a multisublattice antiferrodielectric is shown to possibly lead to anomalous...  相似文献   

12.
13.
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.  相似文献   

14.
15.
Technical Physics - Experimental data for a high-voltage pulsed discharge simultaneously initiated in gas and liquid at their interface are reported. A multielectrode discharge system in which a...  相似文献   

16.
The structural parameters, the formation energies, and the elastic and thermodynamic properties of the(Cu_xNi_(1-x))_3Sn phase with different structures are studied by the virtual crystal approximation(VCA) and super-cell(SC) methods. The lattice constants, formation energies, and elastic constants obtained by SC and VCA are generally consistent with each other. It can be inferred that the VCA method is suitable for(Cu_xNi_(1-x))_3Sn ordered phase calculation. The calculated results show that the equilibrium structures of Cu_3Sn and Ni_3Sn are D0 a and D0_(19) respectively.(Cu_xNi_(1-x))_3Sn-D0_3 with various components are the metastable phase at temperature of 0 K, just as D0_(22) and L1_2. With the temperature increase,the free energy of the D0_3 is lower than those of D0_(22) and L1_2, and D0_(22) and L1_2 eventually turn into D0_3 in the aging process. The(Cu_xNi_(1-x))_3Sn-D0_(22) is first precipitated in a solid solution because its structure and cell volume are most similar to those of a solid solution matrix. The L1_2 and the D0_(22) possess better mechanical stability than the D0_3. Also,they may play a more important role in the strengthening of Cu–Ni–Sn alloys. This study is valuable for further research on Cu–Ni–Sn alloys.  相似文献   

17.
The magnetic properties and microstructure of electrodeposited Ni–W thin films (0–11.7 at% W in composition) were studied. The film structures were divided into three regions: an FCC nanocrystalline phase (0–2 at% W), a transition region from FCC nanocrystalline to amorphous phase (2–7 at% W), and an amorphous phase (>7 at% W). In the transition region, (4–5 at% W) films with perpendicular magnetic anisotropy (PMA) were found. The saturation magnetization, magnetic anisotropy field, perpendicular magnetic anisotropy and perpendicular coercivity for a typical Ni–W film (4.5 at% W) were 420 kA/m, 451 kA/m, 230 kJ/m and 113 kA/m, respectively. The microstructure of Ni–W films with PMA is composed of isolated columnar crystalline grains (27–36 nm) with the FCC phase surrounded by the Ni–W amorphous phase. The appearance of the interface between the magnetic core of Ni crystalline grains and the Ni–W non-magnetic boundary layer seems to be the driving mechanism for the appearance of PMA. The origin of PMA in Ni–W films is mainly attributed to the magnetoelastic anisotropy associated with in-plane internal stress and positive magnetostriction. The secondary source of PMA is believed to be the magnetocrystalline anisotropy of 〈1 1 1〉 columnar grains and its shape magnetic anisotropy. It is concluded that Ni–W electrodeposited films (4–5 at% W) may be applicable for perpendicular magnetic recording media.  相似文献   

18.
This crystallographic analysis of the structure has been based on the physical theory of large plastic deformation developed by V. V. Rybin, V. I. Vladimirov, and A. E. Romanov. The same terminology and its physical meaning as applied to plastic relaxation of elastic stress, the occurrence of which accompanies the γ→ α transformation, has been used in this study.  相似文献   

19.
In this study, isothermal oxidation behavior of a Cu–Al–Ni–Fe shape-memory alloy between 500 and 900 °C was investigated. Alloy samples were exposed to oxygen by TG/DTA for 1 h at a constant temperature, allowing for calculation of the oxidation constant and activation energy values of the oxidation process. The oxidation constant value increased with temperature, reaching saturation at 800 °C. The effect of oxidation on crystal structure, surface morphology and chemical composition of the Cu–Al–Ni–Fe alloy was determined by X-ray diffractometer (XRD) and scanning electron microscope (SEM)–energy-dispersive X-ray (EDX) analyses. With increasing oxidation temperature, number and intensity of the characteristic 18R martensite phase peaks were reduced while Al2O3 phase peaks were increased. In parallel to the XRD results, the same variations were also detected by SEM–EDX measurements.  相似文献   

20.
The technique for estimating the interfacial free energy of transition-metal nanocrystals and its anisotropy at the interface with their melts has been developed. The expression for the coordinate of the Gibbs’ interface, which takes into account the size dependence, has been derived. The interfacial free energy of crystal faces at the interface with the related melts of monomorphic 4d and 5d metals decreases nonlinearly with a decrease in the nanocrystal size and, at a certain size, disappears. At the nanocrystal radius of more than 10 nm, the interfacial free energy of the faces approaches that for a macrocrystal. The temperature dependence of the interfacial free energy at the crystal–melt interface is almost linear. The technique developed is shown to be in agreement with the known experimental data for mono- and polycrystals and applicable for estimating the orientational, temperature, and size dependences of the interfacial free energy at the interfaces of nano-, micro-, and macrocrystals with their melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号