首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The orientation of the crystallographic c axis (chain axis) was followed by x-ray diffraction during the crystallization of four samples of isotactic polystyrene differing in elongation ratio. The crystallite orientation can be expressed by 〈cos2 χc〉, where χc is the angle between the c axis and the stretching direction. The degrees of crystallinity w were estimated from the diffraction data by using density for calibration. It was found that 〈cos2 χc〉 decreases in a linear manner with crystallinity, the rate of decrease being very small when the elongation ratio α is 5, but becoming progressively larger as α is decreased toward unity. A qualitative measure suggests that amorphous orientation decreases during crystallization at a rate which is nearly independent of α. The variation of 〈cos2 χc〉 with w is therefore governed by the orientation of the statistical chain segments prior to crystallization. If the elongation ratio is small, the supply of well oriented statistical segments is limited, and 〈cos2 χc〉 will decrease at a rapid rate during crystallization. A treatment due to Krigbaum and Roe permits evaluation of the ratio, ν/N, where ν and N are the average numbers of statistical segments in the crystallization nucleus of critical size, and in a network chain, respectively. Our polystyrene samples were not crosslinked, so chain entanglements must serve as junction points. Values of ν could not be obtained, since N was unknown. However, the (ν/N) ratio for isotactic polystyrene decreases slowly with α, and the values agree reasonably well with those obtained in a previous study of oriented polychloroprene networks. After nearly complete crystallization (ω ca. 0.30), the long period spacing measured by low angle diffraction was approximately 135 Å, and varied only slightly with elongation ratio in the range α = 1 to 5. It therefore appears that chain folded lamellae are present in both drawn and undrawn samples of isotactic polystyrene.  相似文献   

2.
For polyethylene fibers, orientation parameters of the form 〈cos2 ?〉 were calculated from traces obtained with an x-ray diffractometer equipped with an orientation integrator. The angle ? is that which a crystal or molecular axis makes with the fiber axis. Traces over a continuous range of diffraction angle were obtained for (2/π)Iav, and also the weighted averages (2/π)Iav 〈cos2?〉 and (2/π)Iav 〈sin2?〉, where Iav is the intensity averaged over all orientations. The orientation for the crystal a, b, and c axes were determined from area measurements of the {110} and {200} lines, and the orientation parameter for the molecular axis in the amorphous phase was determined from area measurements of the amorphous halos. An undrawn fiber showed a slight a and c axis orientation along the fiber axis, and a slight transverse orientation of the b axis and the molecular axis. For a highly drawn fiber the orientation parameter for the c axis was 0.98 and for the molecular axis 0.65. The degree of crystallinity, measured from the (2/π)Iav versus 2θ traces, were 66.1% and 73.3% for the undrawn and drawn fiber, respectively.  相似文献   

3.
Polarized Raman intensities have been obtained from thin films of oriented low-density polyethylene (PE) immersed in silicone oil to minimize surface scattering. Studies were made using the 1170 cm?1 crystalline band and the 1081 cm?1 amorphous band, and from these the orientation averages 〈cos2 θ〉 and 〈cos4 θ〉 were calculated. These were found to compare favorably with the values of 〈cos2 θ〉 for the polymer chain in the crystalline and amorphous phases obtained from measurements of infrared dichroism. Both orientation averages could be theoretically fitted by using reasonable parameters.  相似文献   

4.
The molecular orientation distribution of poly(p‐dioxanone) (PPDX) uniaxially oriented commercial fibers was determined by polarized Raman spectroscopy and X‐ray diffraction. The order parameters 〈P200〉 and 〈P400〉 of the orientation distribution function were determined by polarized Raman spectroscopy. For the C?O stretching band, the values of 〈P200〉 and 〈P400〉 obtained are equal to ?0.40 ± 0.04 and 0.28 ± 0.04, respectively. These results clearly indicate that the carbonyl groups are highly oriented perpendicular to the fiber axis. X‐ray diffraction led to a fiber repeat value of 0.628 nm for these samples, and to 〈P200〉 and 〈P400〉 values of 0.93 and 0.82, respectively, for the c‐axis orientation, indicating a high orientation in the draw direction of the fibers. A Monte‐Carlo conformational search led to 20 low‐energy conformations, but only one of these was found compatible with both the fiber repeat and the angle between the C?O bond and the fiber axis. This conformation, a 21 helix with a tg?ttg? succession of torsion angles, is proposed as the existing conformation in the crystalline state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 406–417, 2008  相似文献   

5.
The ratios of the intensities of Raman scattering in the C? CI stretching region for eight combinations of sample orientation and directions of polarization of incident and scattered light have been measured for 15 samples of poly(vinyl chloride) (PVC) containing 0, 5, 10, 15 or 20 pph dioctyl sebacate (DOS) plasticizer which had been drawn uniaxially at 22, 70, 75, 80, or 90°C to draw ratios in the range 1–4.5. The birefringences of the samples were also measured. The Raman data were analyzed to give 〈P2(cosθ)〉cryst and 〈P4(cosθ)〉cryst, the values of the second- and fourth-order Legendre polynomials in cosθ averaged over the distribution of orientations of the crystallites, where θ is the angle between the c axis of a typical crystallite and the draw direction. Comparison of 〈P2(cosθ)〉cryst with the birefrigence showed that the crystallites are more highly oriented than the noncrystalline material in samples containing the higher amounts of plasticizer drawn at the higher temperatures. A value of 13.0 × 10?3 was deduced for the birefringence of fully oriented PVC. The values of 〈P4(cosθ)〉cryst for a given 〈P2(cosθ)〉cryst were found to be higher than predicted by calculations based on two simple models, the pseudoaffine rigid-rod rotation model and the affine rubber elasticity model.  相似文献   

6.
The oriented superstructure of poly(vinylidene fluoride) is controlled by using a forced-quenching type of zone drawing apparatus. Systematic variation of the weight fraction χ(I) of form-I crystals and the orientation function fa of amorphous chains shows that the piezoelectricity increases with increasing χ(I) and fa. A change in the state of molecular aggregation during poling is also effective in increasing the piezoelectricity and the orientation of the crystal b axis along the poling direction. Equations relating piezoelectricity to the form-I crystallinity, the orientation of amorphous chains, and the orientation of the crystal b axis along the poling direction are derived. These are based on a mechanical model having regions of taut tie molecules in parallel with composite regions consisting of crystalline and amorphous blocks in series.  相似文献   

7.
A wide-angle x-ray diffraction (WAXD) study of the development of molecular orientation in the crystalline phase of ultra-high–molecular weight polyethylene films prepared by the gelation–crystallization method is presented. WAXD scans of the undrawn films show that the lamellae are oriented in the plane of the films. Upon drawing at 130°C, the orientation of the molecular chains changes from the direction normal to the film surface (ND) to the elongation direction. The decrease of the 200/020 intensity ratio at low draw ration (λ <10) indicates that double orientation develops during the transformation from the lamellar to the fibrillar morphology, with the a-axis oriented parallel to ND. The orientation distributions of the 110, 200, 020, and 002 planes of the orthorhombic unit cell of polyethylene were studied and characterized by the coefficients of a Legendre polynomial series. At a draw ratio of 4.5, the second-order coefficient, 〈P2(cos χ〉, already gets close to its limiting value, but it is shown that higher order coefficients of the polynomial series can be used to describe the evolution of the orentation, even up to λ = 50. The coefficients relative to the molecular chain orientation, 〈Pn(cos χ)〉c, can be calculated from different crystalline reflections. Curve-fitting calculations were made in order to improve the correlation between the results obtained from the orientation distribution of the 110, 020, and 002 planes. A Person VII function was found to give a better fit of the experimental curves than Gaussian or Lorentzian equations. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
One of the cyclic oligomers of formaldehyde, 1,3,5,7,9,11-hexoxecane, was found to undergo polymerization in the solid state to form polyoxymethylene both during and subsequent to x- or γ-irradiation. The polymer yield increases with polymerization temperature but decreases drastically near the melting point of the hexoxecane crystal. In order to clarify the specificity of the solid-state polymerization, the crystal structure of hexoxecane was first analyzed; hexoxecane forms a trigonal crystal with cell dimensions of a = b = 7.917 Å, c = 11.345 Å, space group R3 –C3i2, three molecules of 3 symmetry per unit cell. The polyoxymethylene as polymerized from a single crystal of hexoxecane is highly crystalline and the crystallites are definitely oriented with respect to the original crystal. There are three kinds of oriented trigonal polyoxymethylene: i.e., with the polymer chains oriented along the 〈100〉, 〈001〉, and 〈210〉 axes of the hexoxecane crystal. The relative yields of these crystallites depend upon the polymerization temperature. In addition to the ordinary trigonal polyoxymethylene, oriented orthorhombic polyoxymethylene was also found in the case of polymerization during treatment with x-rays.  相似文献   

9.
A new typical orientation pattern of polyethylene has been observed in extruded, melt-drawn composites containing 10% polyethylene and 90% polystyrene. In these composites, the polyethylene phase is dispersed in the polystyrene matrix as thin, long ribbons (width 1000 Å, thickness 500 Å). The b axis of the crystallites is found oriented preferentially along the long dimension of the ribbons, i.e., in the extrusion direction. The a and c axes of the crystallites show no preferred orientation. This texture pattern is attributed to the fact that, in view of the small cross section of the polyethylene phase, crystallization can proceed only along the long axis of the ribbons. Since the b axis is the direction of fastest growth in polyethylene (and the radial direction in a spherulite), most polyethylene unit cells are oriented with their b axes in the long dimension of the ribbons.  相似文献   

10.
Electroreduction of an aqueous solution of a soluble Zn salt results in the deposition of ZnO crystallites with hexagonal columnar morphology. The crystallites grow with their long axes normal to the substrate resulting in adherent coatings with a strong c-axis orientation. This phenomenon is on account of the polarity of the 001 crystal face combined with the high dielectric constant of water. When the dielectric constant of the solvent is changed by making a mixture of water and isopropanol, there is a change in the direction of orientation of the coating. The switch takes place in the sequence [001] → [102], [103] → unoriented → [100], [110] as the isopropanol concentration is raised in a step-wise manner to 60% (v/v). The switch in orientation is caused by the tilt of the long axes of the hexagonal columns of ZnO with respect to the normal to the substrate. Above 60% isopropanol concentration, ZnO deposition is suppressed. This work demonstrates solution-mediated control over oriented crystallization.  相似文献   

11.
Crystal and phase morphologies and structures determined by self-organization of crystalline-amorphous diblockcopolymers, crystallization of the crystallizable blocks, and vitrification of the amorphous blocks are reviewed through asystematic study on a series of poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers. On the base ofcompetitions among these three processes, molecular and supramolecular ordering in confined environments can beinvestigated. In a concentration-fluctuation-induced disordered (D_(CF)) diblock copolymer, the competition between crystalli-zation of the PEO blocks and vitrification of the PS blocks is momtored by time-resolved simultaneous small angle X-rayscattering (SAXS) and wide angle X-ray diffraction (WAXD) techniques. In the case of T_c相似文献   

12.
The orientation of crystallites in a bundle of parallel cotton fibers was studied by x-ray diffraction. The intensity distributions of the 101 and 002 diffraction rings showed the distributions of (101) and (002) planes to be identical within the limits of accuracy. Therefore, the crystallites in the cotton fibers very likely had random orientation about their long axes. The orientation distribution of these axes was calculated by using the intensity distribution of the 002 diffraction ring. The cylindrically symmetrical density distribution J(β) thus obtained was multiplied by sin β to obtain the distribution of relative numbers of crystallites at given angles β to the long axis of the fiber. The average 〈β〉 was found to be in agreement with the value of 〈sin2β〉 measured from the 002 diffraction ring. The intensity distributions on the 101 and 002 diffraction rings showed small fluctuations. These fluctuations appeared much stronger in the J(β) and sin β J(β) distributions, indicating clear discontinuities in the pitch angle distribution.  相似文献   

13.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The oriented crystallization of poly(vinylidene fluoride) (PVDF) in stretched films of a PVDF/nylon 11 blend was investigated. At low crystallization temperature the c‐axis of the PVDF α‐form was oriented to the orientation axis of the nylon 11 matrix, but c‐axis orientation gradually changed to a‐axis orientation upon increasing the crystallization temperature. Under all crystallization conditions studied, considerable amounts of PVDF in its β‐form with c‐axis orientation were produced as well.

Phase morphology of a stretched film of PVDF/nylon 11 blend observed with confocal laser scanning microscopy.  相似文献   


15.
Bounds on the elastic constants are derived for semicrystalline polymers whose local morphology is lamellar. Local response matrices (stiffness and compliance) are formulated in three dimensions that simultaneously incorporate uniform in-plane strain and additive forces from layer to layer of crystalline and amorphous phases and uniform stress and additive displacements normal to the lamellar surfaces. Spatial averaging of the stiffness and compliance matrices under the assumption of axially symmetric orientation gives the upper and lower bounds on the longitudinal and transverse tensile moduli and the axial and transverse shear moduli as functions of the separate phase elastic constants, the volume percent crystallinity, and the moments of the orientation 〈cos2θ〉 and 〈cos4θ〉. The bounds are much tighter than the Voight upper and Reuss lower bounds that do not recognize phase geometry. Using the known crystal elastic constants of polyethylene, sample calculations on isotropic unoriented materials show that the divergence of bounds at high crystallinity necessitated by the extreme crystal anisotropy shows up only at very high crystallinity. At low temperature the bounds are tight enough to specify G1, the amorphous modulus, from the measured G and the known crystal elastic constants. At higher temperatures and lower G, the bounds are not tight enough for this purpose but the shear modulus versus crystallinity and temperature data are well fitted by the lamellar lower bound using a temperature-dependent, crystallinity-independent G1.  相似文献   

16.
 This second part of a systematic study of the properties of crosslinked-oriented gelatin involves the effects of orientation and water content on the glass transition temperature T g and on the melting behavior. The samples were the same as those in the preceding study, and their transition temperatures were determined by both differential scanning calorimetry and dynamic mechanical thermal analysis. The crosslinked gelatin which had been room-conditioned showed two transition temperatures: the lower one was attributed to T g of the water-plasticized gelatin, and the higher one was interpreted as T g of dried gelatin superimposed by melting. A rather unusual situation arose because of the fact that the T g and melting temperatures T m (217 and 230 °C, respectively) are so similar. Using water as plasticizer not only decreases T g but produces imperfect crystallites which melt below the T g of the system. The presence of the amorphous phase in the glassy state would presumably make it essentially impossible to define a melting point or crystallization temperature in the normal manner, as an equilibrium between crystalline and amorphous phases. Received: 8 October 1996 Accepted: 2 November 1995  相似文献   

17.
A model relating crystal orientation to the deformation of nylon-6 spherulites under uniaxial stretching is discussed in terms of the orientation distribution functions of reciprocal lattice vectors of crystal planes, such as the (002) and (200) planes. The distribution functions calculated from the model are compared with those obtained from x-ray diffraction experiments. It is found that the crystal a axis and, consequently, the direction of hydrogen bonds within the crystal (α modification) orient parallel to the lamellar axis in the undeformed state, and that the crystal orientation behavior of nylon-6 is much different from that of low-density polyethylene, being characterized by much smaller values of the reorientation parameters of crystallites within orienting lamellae. Moreover, small-angle light scattering for Hv and Vv polarization is also calculated on the basis of the spherulite deformation model by taking the nylon-6 crystal as having orthogonal–biaxial symmetry in optical anisotropy. It is concluded that the Hv scattering can be realized in terms of the proposed model for spherulite deformation by taking into account a considerable contribution of hydrogen bonds to the molecular polarizability, so as to make the polarizability along the crystal a axis larger than that along the b axis. In other words, this conclusion suggests positively birefringent spherulites in the nylon-6 samples studied.  相似文献   

18.
This article describes the oriented crystallization of poly(L ‐lactic acid) (PLLA) in uniaxially oriented blends with poly(vinylidene fluoride) (PVDF). Uniaxially drawn films of PLLA/PVDF blend with fixed ends were heat‐treated in two ways to crystallize PLLA in oriented blend films. The crystal orientation of PLLA depended upon the heat‐treatment process. The crystal c‐axis of the α form crystal of PLLA was highly oriented in the drawing direction in a sample cold‐crystallized at Tc = 120 °C, whereas the tilt‐orientation of the [200]/ [110] axes of PLLA was induced in the sample crystallized at Tc = 120 °C after preheating at Tp = 164.5–168.5 °C. Detailed analysis of the wide‐angle X‐ray diffraction (WAXD) indicated that the [020]/ [310] crystal axes were oriented parallel to the drawing direction, which causes the tilt‐orientation of the [200]/ [110] axes and other crystal axes. Scanning electron microscopy (SEM) suggested that oriented crystallization occurs in the stretched domains of PLLA with diameters of 0.5–2.0 μm in the uniaxially drawn films of PVDF/PLLA = 90/10 blend. Although the mechanism for the oriented crystallization of PLLA was not clear, a possibility was heteroepitaxy of the [200]/[110] axes of the α form crystal of PLLA along the [201]/[111] axes of the β form crystal of PVDF that is induced by lattice matching of d100(PLLA) ≈ 5d201(PVDF). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1376–1389, 2008  相似文献   

19.
Crystallization is studied for poly(isoprene‐1,4‐cis) from Hevea brasiliensis (natural rubber [NR]) and from taraxacum kok‐saghyz, mainly by collecting wide‐angle X‐ray diffraction patterns after processing and stretching. Although rubber samples before stretching are generally fully amorphous, crystallization can be induced in NR samples by processing at room temperature under moderate pressure. This phenomenon is possibly associated with nucleation by saturated fatty acid components. For rubber samples being fully amorphous in the undeformed state, strain‐induced crystallization occurs only at high strain ratios (α > 4), leading to high degrees of crystalline phase orientation (fc > 0.9 for α = 5). Rubber samples presenting some crystallinity already in the unstretched state, on the contrary, reach much lower degrees of axial orientation, even for high strain ratios (fc < 0.7 for α = 5). These differences in crystallinity and in crystalline phase orientations produce large differences in stress–strain behavior of the rubber. By room temperature processing, the considered NR samples can also develop an unreported disordered crystalline modification, with low intensity of 120 and 121 reflections. This disordered crystalline modification, which is also maintained after axial stretching procedures, can rationalized by a structural disorder along the b axis, possibly associated with statistical sequences of A+TA? or A?T A+ conformations for poly(isoprene‐1,4‐cis) chains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Unoriented T-die flat films of nylon 6 and PET films annealed at 90°C were stretched in water at 80°C. Amorphous PET films were stretched in water at 65–75°C. Changes in the light scattering patterns from these samples upon stretching were investigated. One of the observed LS patterns from the stretched samples is the Hv eight-leaf pattern consisting of four lobes and streaks. In the nylon 6 and heat-treated PET showing this pattern, spherulitic patterns can be seen in polarization microscopy. The microscopic spherulitic superstructure may possibly be the factor responsible for producing the lobe-and-streak pattern. On the other hand, many microscopic eight-leaf patterns can be observed in amorphous unannealed PET showing the lobe-and-streak pattern. These microscopic patterns are due to retardation at stress concentrations around impurities and nuclei. The superstructure giving these microscopic patterns must be the origin of the lobe-and-streak pattern from unannealed PET. Another scattering pattern, the Vv cruciform pattern, was observed in both stretched nylon 6 and unannealed PET. This pattern is due to an orientation change across the slip lines observed under a polarizing microscope. It is noted (1) that the appearance of the slip lines in PET coincides with the occurrence of oriented crystallization on stretching, (2) that the lobe-and-streak pattern from PET in which orientation crystallization has taken place is fairly stable to heat treatment and does not disappear until just before melting, and (3) that the superstructures produced at low stretching seem to be deformed on further stretching, in accordance with affine deformation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号