首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ternary metastable TiNiFe alloys that exhibit a low-temperature shape memory effect and are subjected to plastic deformation by rolling or high-pressure torsion followed by heat treatment are studied by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and electrical resistivity measurements. It is found that moderate plastic deformation of a Ti50Ni49Fe1 alloy at room temperature initiates the thermoelastic B2 ? B19’ martensitic transformation and the formation of a developed banded dislocation and twin substructure in the B19’ martensite. This deformation of a Ti50Ni47Fe3 alloy forms a similar dislocation substructure but in B2 austenite. Megaplastic deformation by high-pressure torsion causes amorphization in the Ti50Ni49Fe1 alloy and nanofragmentation in the Ti50Ni47Fe3 alloy. The evolution of the nanostructure and the martensitic transformations in TiNiFe-based ternary alloys is studied during plastic deformation and subsequent annealing at various temperatures.  相似文献   

2.
The formation of microcracks upon dislocation interactions was studied by means of TEM analysis. The types of microcracks were classified depending on the orientation of deformation axes in single crystals. The Griffith surface energy was simulated, and the energy of unstable stacking faults was calculated by the molecular dynamics method using the N-particle EAM potentials of the interatomic interaction for Ti3Al. The Rice—Thompson model was used to study the relationship between the tendency toward cleavage and the plastic relaxation of stresses near a crack tip by the emission of dislocations in Ti3Al single crystals.  相似文献   

3.
A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg-Gd-Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the twin platelets and residual microbands into sub-microstructures. As a result, homogeneous nanostructure with a grain size of about 10-20 nm is formed through dynamic recrystallization in the topmost surface layer. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation with higher strain rate during the HVOF-SMB treatment in the rare earth Mg-Gd-Y alloy was proposed.  相似文献   

4.
Grain boundary processes during plastic deformation of bicrystals were studied by TEM. Two methods were used. In situ straining in the electron microscope followed by post mortem examination and post mortem observation of specimens previously deformed by in situ synchrotron radiation X-ray topography. Two mechanisms governing slip propagation across a coherent twin boundary in a Fe-Si alloy bicrystal were identified. The first mechanism is a dissociation of a slip dislocation with the Burgers vector lying parallel to the boundary into three equal grain boundary dislocations. The second mechanism is a decomposition of a slip dislocation with Burgers vector inclined to the boundary into a dislocation mobile in the other grain and two screw grain boundary dislocations.  相似文献   

5.
6.
The influence of annealing on bulk samples of Ti49.4Ni50.6 alloy subjected to severe plastic deformation by torsion under high pressure has been studied by transmission electron microscopy and X-ray diffractometry. It is found that a homogeneous nanocrystalline state is formed in the bulk samples after annealing.  相似文献   

7.
In the present work, B4C/2024Al composites with volume fraction of 45% were prepared by a pressure infiltration method. The microstructure of the crater bottom of B4C/2024Al composite after impact was characterized by transmission electron microscope (TEM), which indicated that recovery and dynamic recrystallization generated in Al matrix, and the grain size distribution was about from dozens of nanometer to 200 nm. Furthermore, the plastic deformation was observed in B4C ceramic, which led to the transformation from monocrystal to polycrystal ceramic grains. The boundary observed in this work was high-angle grain boundary and the two grains at the boundary had an orientation difference of 30°.  相似文献   

8.
The structure of bulk samples of Ti49.4Ni50.6 alloy after severe plastic deformation by torsion (SPDT) under high pressure have been studied by transmission and scanning electron microscopies. It is found that SPDT by five to seven turns led to almost complete alloy amorphization.  相似文献   

9.
Transmission electron microscopy was used to examine the dislocation structure of intermetallic Ti3Al subjected to deformation at tempertures T = 1073–1273 K. The microstructure of samples subjected to high-temperature deformation is established to contain mobile superdislocations of a and 2c + a types, and single dislocations with Burgers vector [0001] are also observed on the prismatic planes. Possible models of destruction of barriers associated with 2c + a superdislocations on the pyramidal planes are discussed using the results of computer simulations of the structure of a superdislocation core in in Ti3Al.  相似文献   

10.
强流脉冲电子束诱发纯镍表层纳米结构的形成机制   总被引:3,自引:0,他引:3       下载免费PDF全文
利用强流脉冲电子束(HCPEB)技术对多晶纯镍进行了表面处理,并采用扫描电镜和透射电镜对强流脉冲电子束诱发的表面及亚表面的微观组织结构进行了分析.实验结果表明,HCPEB辐照后表面熔化,形成了深度约为2 μm的重熔层,快速的凝固使重熔层中形成晶粒尺寸约为80 nm的纳米结构.位于轰击表面下方5—15 μm深度范围内强烈塑性变形引起的位错墙和其内部的亚位错墙结构是该区域的主要结构特征.这些缺陷结构通过互相交割细化晶粒,最终导致尺寸约为10 nm的纳米晶粒的形成. 关键词: 强流脉冲电子束 纳米结构 多晶纯镍 位错墙  相似文献   

11.
An electron microscopic analysis of the dislocation structure of two-phase α2/β Ti-21.4 at % Al-5.6 at % Nb alloy deformed at ambient temperature was performed. It was established that after deformation, the microstructure of the α2 phase consists of mobile a-superdislocations in the basal and prism planes and of 2c + a-superdislocations in the pyramidal planes. Some dislocations with the Burgers vector [0001] in the prism planes were also observed. Deformation transfer from the α2 to the β phase occurs only due to a-super-dislocations with a Burgers vector corresponding to the Burgers orientation relations between these phases. The reasons for the increase in plasticity in two-phase Ti3Al with Nb alloys are discussed.  相似文献   

12.
This paper reports that Cr2O3 hollow nanospheres(HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy,x-ray powder diffraction,transmission electron microscopy(TEM),selective area electron diffraction and high resolution TEM,respectively.In addition,the room-temperature(RT) gas sensing properties of Cr2O3 HNs and conventional powders(CPs) were investigated by means of the surface photovoltage technique.The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm,which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT.The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.  相似文献   

13.
Five sets of soft-magnetic metals, such as pure Fe, pure Ni, Fe-3 wt% Si, Fe-6.5 wt% Si and Fe-17 wt% Co, were subjected to high pressure torsion (HPT) up to strain levels where a saturation of the microstructural refinement is observed. Following HPT at 77, 293 and 723 K, transmission electron microscopy (TEM) was used to study the grain size and grain shape of the severely deformed metals. The coercivity HC was characterized in a magnetic closed system by using ring shaped samples. Magnetic measurements obtained on ring shaped samples give a much higher accuracy for determining the coercivity. Depending on the material the mean microstructural sizes in the steady state vary from 300 nm at 723 K to 30 nm at 77 K, respectively. The coercivity of the deformed materials first increases with decrease in grain size. Once the crystallite size is far below 100 nm the coercivity shows a strong decrease.  相似文献   

14.
We have investigated the plastic deformation properties of single-phase Zr–Nb–Ti–Ta–Hf high-entropy alloys from room temperature (RT) up to 300 °C. Uniaxial deformation tests at a constant strain rate of 10?4?s?1 were performed, including incremental tests such as stress relaxations, strain-rate changes, and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr–Nb–Ti–Ta–Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. At RT we measure a flow stress of about 850 °C. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm3. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.  相似文献   

15.
The transmission electron microscopy was used to examine the dislocation structure of intermetallic Ti3Al after deformation at temperatures T = 1073–1273 K. It is established that its microstructure contains mobile 2c + a and superdislocations. Possible models describing the destruction of barriers associated with 2c + a superdislocations in pyramidal planes are discussed using the results of computer simulation of the superdislocation core structure in Ti3Al.  相似文献   

16.
Abstract

In this study, dense fine-grained ZrB2 and TiB2 were fabricated using reactive spark plasma sintering (RSPS) of ball-milled Zr/B and Ti/B mixtures. Systematic investigations were carried out to understand the mechanisms of reactive sintering. Two densification mechanisms were found to be operating during RSPS. The first stage of densification was due to self-propagating high temperature synthesis reaction leading to formation of ZrB2 and TiB2 compacts having relative density of ~48 and ~65%, respectively. The second stage of densification occurred at temperatures more than 1100 °C and resulted in final relative density of more than 98%. Electron backscatter diffraction and electron microscopy studies on interrupted RSPS samples as well as dense samples showed deformed grains and presence of slip steps while grain orientation spread map and pole figure analysis confirmed plastic flow. Plastic flow-aided pore closure is shown as major mechanism during reactive sintering.  相似文献   

17.
P-type Bi2Te3-based thermoelectric semiconductors were prepared, having a grain-refined microstructure and a preferred orientation of anisotropic crystallographic structure. Disks with a nominal composition of Bi0.5Sb1.5Te3.0 were cut from an ingot grown by the vertical Bridgman method (VBM) and deformed at 473 K under a pressure of 6.0 GPa by high-pressure torsion (HPT). The crystal orientation was characterized by X-ray diffraction. The microstructures were characterized using optical microscopy and scanning electron microscopy (SEM). It was found that the HPT disks had a fine and preferentially oriented grain compared to that of the VBM disks. Further, the power factor of the HPT disks was about twice as large as that of the VBM disks. These results indicate that HPT is effective in improving the thermoelectric properties of Bi2Te3-based thermoelectric semiconductors.  相似文献   

18.
TiN和Ti1-xSixNy薄膜的微观结构分析   总被引:2,自引:0,他引:2       下载免费PDF全文
使用x射线衍射(XRD)、x射线光电子谱(XPS)、高分辨透射电子显微镜(HRTEM)和原子力显微镜(AFM)多种观测手段分析了TiN薄膜和Ti1-xSixNy纳米复合薄膜的微观结构.实验分析证明Ti1-xSixNy薄膜是由直径为3—5nm的纳米晶TiN和非晶Si3N4相构成,并且Ti1-xSix关键词: 纳米复合薄膜 自由能 表面粗糙度 TiN 1-xSixNy')" href="#">Ti1-xSixNy  相似文献   

19.
Russian Physics Journal - Transmission electron microscopy (TEM) is used to investigate the evolution of the dislocation substructure after active plastic deformation of copper-aluminum alloys with...  相似文献   

20.
杨翠英  张道范  吴星  周玉清  冯国光 《物理学报》1989,38(12):2003-2007
用分析电子显微镜研究了顶部籽晶法生长的BaTiO3晶体内的缺陷。成功地制备出薄区厚约100nm内含包裹体的电子显微镜样品。用透射电子显微镜(TEM),配合电子能量损失谱(EELS)确定了BaTiO3单晶内包裹体的相分为:非晶的Ba-Ti-O和高Ti-Ba氧化物——Ba6Ti17O40在BaTiO3单晶试样中,还观察到其它几种类型的微缺陷。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号