首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometries and electronic properties of Sn Se/metal contact have been investigated using first-principles calculation. It is found that the geometries of monolayer Sn Se were affected slightly when Sn Se adsorbs on M(M = Ag, Au, Ta)substrate. Compared with the corresponding free-standing monolayer Sn Se, the adsorbed Sn Se undergoes a semiconductorto-metal transition. The potential difference ?V indicates that Sn Se/Ta contact is the best candidate for the Schottky contact of the three Sn Se/M contacts. Two types of current-in-plane(CIP) structure, where a freestanding monolayer Sn Se is connected to Sn Se/M, are identified as the n-type CIP structure in Sn Se/Ag contact and p-type CIP structure in Sn Se/Au and Sn Se/Ta contact. The results can stimulate further investigation for the multifunctional Sn Se/metal contact.  相似文献   

2.
N. Al-Zoubi 《哲学杂志》2018,98(12):1099-1113
Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1–x and AuxNb1–x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner–Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au–V system, the equilibrium Wigner–Seitz radius increase as x increases, while for the Au–Nb system, the equilibrium Wigner–Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C′ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au–V and Au–Nb systems.  相似文献   

3.
4.
N. I. Medvedeva 《哲学杂志》2018,98(23):2135-2150
Ab initio calculations were carried out to compare the mechanical properties of β-based non-canonical Al–Cu–Fe approximants of quasicrystals with cubic (β), monoclinic (η) and orthorhombic (ξ1, ξ2) structures, which all demonstrate high strengthening. The aim was to elucidate the competitive effects of the η- and ξ-ordering and iron content on deformation behaviour of these phases. We found that the Young’s modulus, polycrystalline shear modulus, mechanical stability and shear elastic modulus G(n,m) for different slip planes decrease for β-Al50Cu1-xFex with lowering iron content, but they grow from β-Al50Cu31.25Fe18.75 to the ordered η-Al50Cu45Fe5, and ξ2-Al45.5Cu50Fe4.5 that indicates a growing resistance to plastic deformation due to ordering and agrees well with our experimental finding. The preferable slip systems were predicted based on the calculated generalised stacking fault (GSF) energies in β-(Cu,Fe)Al and η-(Cu,Fe)Al with similar Fe concentration. The GSF energies confirmed also that the strengthening observed in η-phase is related to ordering rather than the Fe effect in consistence with a stronger covalent bonding in η-phase.  相似文献   

5.
The interaction and coupling between the electrical, mechanical properties and formation energy for SW defective (10,0) carbon nanotube is studied in density functional theory. The investigated configurations include the axial and circumferential orientations for single defect as well as four distribution types for double ones. The more stable defective configurations, namely, SW-I configurations for single SW defective carbon nanotube and II–II-(2) and I–I ones for double SW defective tubes are related to high symmetry distribution of the defects. Moreover, we found that the σ?–π* hybridization induced by curvature effect causes the semiconductor to metal transition for double axial SW defects case. Young's modulus reduction of SW defective carbon nanotube with respect to defect-free one is less than 8%. The energy bands and Young's moduli of double SW defective tubes are mostly affected by the defect distribution and concentration but insensitive to the circumferential distance between the double defects.  相似文献   

6.
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1–x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu–Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu–Cohen generalised gradient approximation and the modified Becke–Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard’s law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

7.
The phonon spectrum and phonon density of states of ?-GaSe layered semiconductor have been studied from the first principles in the linear-response approximation. The elastic constants and acoustic velocities along and across layers have been determined. The study of the equilibrium structure and phonon spectrum of the (0001) surface of ?-GaSe has demonstrated that the volume and surface structural dynamic properties of these crystals differ insignificantly. The calculated frequencies and symmetries of the phonon modes in the center of the Brillouin zone are in good agreement with the experimental data obtained from the Raman scattering and infrared spectra.  相似文献   

8.
The superconductivity of gold–indium alloys has been investigated using first-principles calculations based on the density functional theory. At ambient pressure, the calculated superconducting transition temperature (T c) is 0.04 μ K in pure gold, but T c dramatically increases by substituting indium atoms for gold atoms. The gold–indium alloy having 12.5 atomic percent indium (Au0.875In0.125) shows T c of 0.1 K, and Au0.75In0.25 marks 1.7 K. The dramatic increase in T c owing to the alloying effect is caused by the enhancement of the electron–phonon coupling. The superconductivity of gold is predicted to be drastically weakened with increasing pressure and virtually disappear at 10 GPa, but it continues up to at least 30 GPa by the inclusion of indium atoms.  相似文献   

9.
The structural, elastic and electronic properties of Al2La, AlLa3 and Al3La binary intermetallics in the Al–La alloy system were investigated using the first-principles method. The calculated lattice constants were consistent with the experimental values. Formation enthalpy and cohesive energy showed that the studied Al2La, AlLa3 and Al3La all have a higher structural stability, and the alloying ability of Al2La and Al3La is stronger than that of AlLa3. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated by the Voigt–Reuss–Hill (V–R–H) approximations, and the relationship of these elastic parameters between Al2La, AlLa3 and Al3La phases were discussed in detail. The results showed that Al2La and Al3La which are anisotropic materials are absolutely brittle, while the isotropic AlLa3 is slightly ductile. Finally, the electronic density of states (DOS) was also calculated to reveal the underlying mechanism of structural stability.  相似文献   

10.
11.
First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures,formation energies,and electronic and optical properties of Y-doped,N-doped,and(Y,N)-codoped TiO 2.The calculated results show that Y and N codoping leads to lattice distortion,easier separation of photogenerated electron-hole pairs and band gap narrowing.The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping,which enhances visible-light photocatalytic activity.  相似文献   

12.
13.
《Physics letters. A》2020,384(30):126782
α-Sn is on the boundary of a couple of distinct topological phases. It will transform into a topological insulator under a suitable strain. However, a clear picture of its topological surface states (TSSs) is still lacking. Here we perform first-principles calculations on the electronic structure of α-Sn(111) surface to identify its TSSs and reveal their properties. The results show that the presence of valence band reorganizes the TSSs in the inverted sp gap into two Dirac cones. The lower one is in the valence band continuum; the upper one resides in the gap between the valence and conduction bands. We also demonstrate the transformation of the surface states by switching on or off of strain and/or spin-orbit coupling. Without spin-orbit coupling, only the TSSs associated with the lower Dirac cone survive, and they are spin unpolarized. The results are useful for understanding and engineering the topological properties of α-Sn.  相似文献   

14.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

15.
《中国物理 B》2021,30(5):57101-057101
Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B_3C_2N_3 and BC_6 N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B_3C_2N_3 and BC_6 N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B_3C_2N_3 and BC_6 N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC_6 N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-II energy band alignment could be designed using B_3C_2N_3 and BC_6 N monolayers. All the above-mentioned characteristics make B_3C_2N_3 and BC_6 N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts, and photovoltaic cells.  相似文献   

16.
《Current Applied Physics》2015,15(11):1556-1561
In this paper, first-principles calculations have been implemented to study the structural relaxation, formation energies and electronic structure of Al doped α-MnO2. Both Al insertion and Al substitution reactions in the α-MnO2 were considered. Calculated formation energies indicate that Mn atom is easier to be displaced by Al atom under the O-rich growth condition compared with Al insertion reaction. Besides, it can be found that Al doping can afford acceptor impurity level which can accommodate electrons, thus contributing to the improvement of conductivity of α-MnO2. The conductivity of α-MnO2 is gradually improved with the increasing doping concentration of Al, and Al0.0417Mn0.9583O2 exhibits the best conductivity. Lastly, the electronic structure of Al0.0417Mn0.9583O2 was further investigated by analysis of total charge density and Bader charge. It is clear that Al doping can afford more electrons for α-MnO2, which also contributes to improvement of its conductivity.  相似文献   

17.
S. Tanaka  R. Yang  M. Kohyama 《哲学杂志》2013,93(32):5123-5135
Adhesive and mechanical properties of the O-terminated (O-rich) α-Al2O3(0001)/Cu(111) interface have been examined by the first-principles pseudopotential method. Strong Cu–O covalent and ionic interactions exist, such as Cu3d–O2p hybridization and substantial electron transfer from Cu to O, which result in larger adhesive energy, greater tensile strength and larger interfacial Young's moduli than the Al-terminated (stoichiometric) interface with electrostatic–image and Cu–Al hybridization interactions. Substantial effects of interfacial Cu–O coordination are also present. Changes in the interface electronic structure for cleavage have been examined. Cu–O interlayer potential curves have been analyzed using the universal binding energy relation and compared with Cu–Al and Cu–Cu curves, which is valuable for the development of effective interatomic potentials in large-scale simulations.  相似文献   

18.
Vahedeh Razzazi  Sholeh Alaei 《中国物理 B》2017,26(11):116501-116501
We employed ab-initio calculations to investigate the structural and thermodynamic properties of Massicot or orthorhombic phase of PbO named β-PbO using the projector augmented-wave(PAW) method within the generalized gradient approximation(GGA). The temperature and pressure dependence of bulk modulus, heat capacity at constant pressure and constant volume, entropy, thermal expansion coefficient and Grüneisen parameter were discussed. Accuracy of two different models, the Debye and Debye-Grüneisen which are based on the quasi-harmonic approximation(QHA) for producing thermodynamic properties of material were compared. According to calculation results, these two models can be used to designate thermodynamic properties for β-PbO with sensible accuracy over a wide range of temperatures and pressures, and our work on the properties of this structure will be useful for more deeply understanding various properties of this structure.  相似文献   

19.
Using the density functional theory calculations, we studied the structural, electronic and optical properties of zincblende Zn1?xCdxS and ZnS1?ySey alloys. Calculated structures and band gaps of these alloys are in good agreement with available experimental and other theoretical values. Present results show that the prominent peaks of the dielectric functions and absorption coefficients have a slight red shift and the amplitudes become larger with the increasing concentration of Cd and Se. Moreover, present findings predict that Zn1?xCdxS and ZnS1?ySey alloys are promising for solar cells and photoconductor and electroluminescent devices due to their high absorption of solar radiations and photoconductivity in the energy region from visible light to ultraviolet.  相似文献   

20.
The structural parameters, the formation energies, and the elastic and thermodynamic properties of the(Cu_xNi_(1-x))_3Sn phase with different structures are studied by the virtual crystal approximation(VCA) and super-cell(SC) methods. The lattice constants, formation energies, and elastic constants obtained by SC and VCA are generally consistent with each other. It can be inferred that the VCA method is suitable for(Cu_xNi_(1-x))_3Sn ordered phase calculation. The calculated results show that the equilibrium structures of Cu_3Sn and Ni_3Sn are D0 a and D0_(19) respectively.(Cu_xNi_(1-x))_3Sn-D0_3 with various components are the metastable phase at temperature of 0 K, just as D0_(22) and L1_2. With the temperature increase,the free energy of the D0_3 is lower than those of D0_(22) and L1_2, and D0_(22) and L1_2 eventually turn into D0_3 in the aging process. The(Cu_xNi_(1-x))_3Sn-D0_(22) is first precipitated in a solid solution because its structure and cell volume are most similar to those of a solid solution matrix. The L1_2 and the D0_(22) possess better mechanical stability than the D0_3. Also,they may play a more important role in the strengthening of Cu–Ni–Sn alloys. This study is valuable for further research on Cu–Ni–Sn alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号