首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A. Epishin  T. Link 《哲学杂志》2013,93(19):1979-2000
[001] single-crystal specimens of the superalloys CMSX-4 and CMSX-10 were tested for creep at 1100°C under tensile stresses between 105 and 135?MPa, where they show pronounced steady creep. The deformed superalloys were analysed by density measurements, scanning electron microscopy and transmission electron microscopy which supplied information about porosity growth, evolution of the γ–γ′ microstructure, dislocation mobility and reactions during creep deformation. It is shown that, under the testing conditions used, steady creep strain mostly results from transverse glide–climb of (a/2) ?011? interfacial dislocations. A by-product of the interfacial glide–climb are vacancies which diffuse along the interfaces to growing pores or to a ?100? edge dislocations climbing in the γ′ phase. Climb of a ?100? dislocations in the γ′ phase is a recovery mechanism which reduces the constraining of the γ phase by the γ′ phase, thus enabling further glide of (a/2) ?011? dislocations in the matrix. Moreover the γ′ dislocations act as vacancy sinks facilitating interfacial glide–climb. The creep rate increases when the γ–γ′ microstructure becomes topologically inverted; connection of the γ′ rafts results in extensive transverse climb and an increase of the number of a?100? dislocation segments in the γ′ phase.  相似文献   

2.
We have investigated by electron tomography, in a transmission electronic microscope, the interactions between dislocations in olivine single crystals and polycrystals deformed in axial compression at T < 1000 °C (T < 0.5Tm). Dislocations are mostly of the [0?0?1] type, except in the polycrystal where [1?0?0] and [0?0?1] dislocations have been activated. A few 〈1?0?1〉 junctions have been found and characterized. Many collinear interactions have been identified either involving direct interactions between crossing dislocations of opposite Burgers vectors or indirect interactions between dislocations gliding in parallel planes and sessile dislocation loops. We suggest that collinear interaction, already identified as the primary source of strain hardening in FCC metals, is the main dislocation interaction mechanism in olivine deformed at temperatures below 1000 °C.  相似文献   

3.
Abstract

High Nb-containing TiAl (Nb–TiAl) alloys possess mechanical properties at elevated temperatures superior to conventional TiAl alloys. However, the strengthening mechanisms induced by Nb addition have been discussed controversial for a long time. In the present study, the dislocation structures in a polycrystalline high Nb–TiAl alloy after tensile tests at 700 and 900 °C were investigated by transmission electron microscope (TEM) observation. The results show that abundant double cross slip of ordinary dislocations is activated in the samples deformed at 700 °C. The dislocations are pinned at the jogs and numerous dipoles are observed. Debris can be commonly observed in the vicinity of screw dislocations. Trace analysis shows that the cross-slip plane is (1?1?0)γ at 700 °C but (1?1?1)γ octahedral plane at 900 °C. Three-dimensional (3D) dislocation structures, caused by cross-slip and annihilation of ordinary dislocations, were observed along the screw orientation. The dipoles and debris produced by high-temperature cross slip can be important for the strengthening of high Nb–TiAl alloys.  相似文献   

4.
The reverse α–α′ phase separation in Fe-20Cr-6Al alloys has been monitored by differential scanning calorimetry in as-hot rolled and recrystallized samples previously aged at 435?°C. The splitting in the position of the minima, and the increasing enthalpy change involved, might be explained in terms of dissolution of α′ particles with different compositions and volume fractions. These results are fully consistent with the αα′ phase separation kinetics determined by atom probe tomography during ageing at 435?°C. The monitoring of activation energy for α′ dissolution indicates that it is faster in as-hot rolled samples. Finally, the activation energy evolution indicates that there is first a dissolution of β′ Fe(AlTi) phase followed by α′ dissolution.  相似文献   

5.
The microstructural evolution, creep and tensile deformation behaviour of a Ti–15Al–33Nb (at.%) alloy was studied. Monolithic sheet material was produced through conventional thermomechanical processing techniques comprising non-isothermal forging and pack rolling. Electron microscopy studies showed that depending on the heat-treatment schedule, this alloy may contain three constituent phases including:?β?(disordered body-centred cubic), α2 (ordered hexagonal close-packed based on Ti3Al) and O (ordered orthorhombic based on Ti2AlNb). Heat treatments at all temperatures above 990°C, followed by water quenching, resulted in fully-β microstructures. Below 990°C, Widmanstätten O-phase or α2-phase precipitated within the?β?grains. The fine-grained as-processed microstructure, which exhibited 90?vol.% β-phase, exhibited excellent strength (UTS?=?916?MPa) and ductility (?f>12%). After heat treatment, greater volume fractions of the orthorhombic phase precipitated and resulted in lower ? f values with UTS values ranging between 836–920?MPa. However, RT elongations of more than 2% were recorded for microstructures containing up to 63?vol.% O-phase. Specimens subjected to 650°C tensile experiments tended to exhibit lower strength values while maintaining higher elongation-to-failure. Tensile creep tests were conducted in the temperature range 650–710°C and stress range 49–275?MPa. The measured creep exponents and activation energies suggested that grain boundary sliding operates at intermediate stress levels and dislocation climb is active at high stresses. Microstructural effects on the tensile properties and creep behaviour are discussed in comparison to a Ti–12Al–38Nb O?+?β alloy.  相似文献   

6.

The intermediate-temperature creep response of single-crystal Ni 3 Al(Ta) has been investigated along both [ ] and [001] axial orientations. The effect of the existing deformation structure (i.e. pre-straining) on the [ ] creep response was reported. The creep responses of virgin specimens and specimens prestrained at room temperature (RT) and 520°C are compared. In order to compare the dislocation structures prior to creep, the microstructure of specimens which had been deformed at a constant strain rate at RT and 520°C, but not subjected to creep, was also examined. Creep curves show that the temperature of pre-strain influences the subsequent creep properties. The primary creep response, like the yielding response, appears to be controlled by the kink size distribution, while the secondary creep response is thought to be controlled by the kink separation (or the length of the Kear-Wilsdorf locks). Specimens crept along [ ] display steady state creep properties and rectangularly oriented [ ](010) dislocations, while a virgin specimen crept along [001] displays an increasing secondary creep rate (inverse creep) and d110 ¢{100}-type dislocations. Inverse creep along [001] is thought to be the result of an increasing density of edge kink octahedral sources where there is little resolved shear stress on the cube planes.  相似文献   

7.
The creep behaviour and microstructure of two silicon nitride ceramics have been investigated. Compressive creep tests were performed at temperatures between 1450 and 1700°C at stresses between 6 and 90?MPa in an Ar atmosphere. The creep behaviour was characterized by a stress exponent lower than one for both materials, with an average value n?≈?0.6 over the whole range of stresses and temperatures, and with apparent activation energies between 470 and 530?kJ?mol?1. The study of the microstructural evolution revealed the absence of dynamic grain growth and, in some cases, evidence of grain rearrangement. Partial coalescence of cavities was observed only at the highest stress, but this did not result in accelerated creep.  相似文献   

8.
The spreading of deformation in a lamellar Ti–47?at.% Al–1?at.% Cr–0.2?at.% Si alloy deformed under compression is studied at 25°C and 600°C. This microstructure is largely dominated by twin-related variants which are separated by either twin interfaces or thin α 2 slabs. The alloy deforms at both temperatures by ordinary dislocations and twins. Deformation in a particular γ variant and its adjacent twin-related variant involves the same kind of glide system, either ordinary dislocations or twins. This property is found to be true for all twin-related lamellae. The occurrence of this correlated glide is explained by the introduction of the notion of pilot and driven orientations. The lamellar orientation in which the operating glide system is activated on the basis of Schmid factor considerations is termed the pilot orientation. It imposes its deformation system on to the twin-related lamella, called the driven orientation, whose deformation may not involve the slip system most favoured by the applied stress.  相似文献   

9.
Polycrystalline aggregates of cementite (Fe3C) and (Fe,Ni)3C have been synthesised at 10 GPa and 1250 °C in the multianvil apparatus. Further, deformation of the carbides by stress relaxation has been carried out at temperature of 1250 °C and for 8 h at the same pressure. Dislocations have been characterised by transmission electron microscopy. They are of the [1?0?0] and [0?0?1] type, [1?0?0] being the most frequent. [1?0?0] dislocations are dissociated and glide in the (0?1?0) plane. [0?0?1] dislocations glide in (1?0?0) and (0?1?0). Given the plastic anisotropy of cementite, the morphology of the lamellae in pearlitic steels appears to have a major role in the strengthening role played by this phase, since activation of easy slip systems is geometrically inhibited in most cases.  相似文献   

10.
Upon nitriding of binary Fe–1 at.% Mo alloy in a NH3/H2 gas mixture under conditions (thermodynamically) allowing γ′-Fe4N1– x compound layer growth (nitriding potential: 0.7?atm?1/2 at 753?K (480?°C) – 823?K (550?°C)), a strong dependency of the morphology of the formed compound layer on the defect density of the specimen was observed. Nitriding of cold-rolled Fe–1 at.% Mo specimens leads to the formation of a closed compound layer of approximately constant thickness, comparable to nitriding of pure iron. Within the compound layer, that is, in the near-surface region, Mo nitrides are present. The growth of the compound layer could be described by a modified parabolic growth law leading to an activation energy comparable to literature data for the activation energy of growth of a γ′-Fe4N1? x layer on pure iron. Upon low temperature nitriding (i.e. ?793?K (520?°C)) of recrystallized Fe–1 at.% Mo specimens, an irregular, ‘needle-like’ morphology of γ′-Fe4N1? x nucleated at the surface occurs. This γ′ iron nitride has an orientation relationship (OR) with the matrix close to the Nishiyama–Wassermann OR. The different morphologies of the formed compound layer can be interpreted as consequences of the ease or difficulty of precipitation of Mo as nitride as function of the defect density.  相似文献   

11.
C. Kohler  T. Link  A. Epishin 《哲学杂志》2013,93(32):5103-5121
Dissociation of a〈100〉 edge superdislocations in Ni3Al, the hardening γ′-phase of nickel-base superalloys, was investigated using molecular dynamics simulations and theory of elasticity. It was shown that these dislocations dissociate either symmetrically or asymmetrically when they are close to the 〈011〉 orientation. The symmetric dissociation, called Hirth lock, has the lowest energy. The reasons for the dissociation are the strong energy reduction due to the core splitting and the relaxation of elastic strains within the dissociation area. The dissociation of a〈100〉 edge superdislocations is the reason for their alignment in 〈011〉 orientation in the γ′-rafts of superalloys. However, the dissociation does not block the movement of the dislocation because they penetrate the γ′-rafts by climbing. Under loading conditions, typical for creep tests of nickel-base superalloys at high temperatures (≥1000°C), the Hirth lock slightly expands but remains stable. The asymmetric configuration is less stable and can transform into the lower energy Hirth lock.  相似文献   

12.
In fcc crystals, dislocations are dissociated on the {111} glide plane into pairs of partial dislocations. Since each partial interacts individually with the Peierls potential and is coupled to its neighbour by a stacking fault, periodic variations in the separation distance d of the partials occur when dislocations running along closed packed lattice directions are displaced. This can drastically reduce the effective Peierls stress. By using the Peierls model the structure of 0°, 30°, 60° and 90° dislocations in a typical fcc metal with the elastic properties of Cu and a stacking-fault energy γ0 in the interval 0.04?≤?γ0?≤?0.05?J/m2 was studied, and the magnitude of the Peierls energy ΔE P and the resulting kink energies E K were determined. Since the energies involved are of the order of 10?3?eV/b or less, their magnitude cannot be asserted with high confidence, considering the simplifying assumptions in the model. The difference in the changes of the core configuration during displacement of dislocations of different orientations should, however, be of physical significance. It is found that a dissociated 60° dislocation generally has a higher effective Peierls energy than a screw dislocation, but the reverse is true for the kink energy, at least in Cu.  相似文献   

13.
The dislocation configurations and their interactions with γ-hydrides were investigated in cyclically strained titanium containing 77?ppm hydrogen. At least three sets of dislocations could be activated in hydride precipitates. To accommodate the inhomogeneous strain between the matrix and the hydrides a crystal rotation, which is a rotation about the [001]γ//[0001]α axis, occurred in both of them. Accordingly cell structures with misorientations up to 10° about the same [0001]α axis formed in the matrix near the interface. A mechanism for the crystal rotation and cell formation was proposed. Also hydride dissolution and strain-induced hydrides were observed at the intersections of slip bands with hydrides, and this was considered to be a process controlled by the hydrogen-transport effect of slipping dislocations.  相似文献   

14.
The behaviour of ordinary dislocations in TiAl alloy creep-deformed at 750°C has been investigated. Two alloys processed by the cast and powder metallurgy routes were crept under tensile stresses of 150 and 80?MPa, respectively. Transmission electron microscopy was performed on the crept samples to determine the characteristics of the dislocations. The stress dependence of the dislocation mechanisms was determined from stress jumps performed during creep deformation. Complementary in-situ heating experiments performed on previously crept samples are also presented. From these experimental investigations, it is shown that some ordinary dislocations move by a mixed climb mechanism for which the elementary process is the nucleation and the lateral propagation of a jog pair. The coherency between this mechanism and the determined activation parameters, as well as the driving force at its origin, are discussed.  相似文献   

15.
The kinetic characteristics of processes taking place during the aging of the alloy 36NKhTYu at 700–850?C were studied; these included an increase in the diameter of theγ′-phase particles formed in regions of continuous decomposition, an increase in the thickness of theγ′-lamellas formed in regions of discontinuous decomposition, and an increase in the volumetric proportion of material in which continuous precipitation of theγ′-phase was occurring. The formation of theη-phase was also studied (the degree of discontinuous precipitation of theη-phase depended on the quench temperature); interstitial stacking faults appeared, their formation and growth being associated with the precipitation of titanium carbide. With increasing period of aging the mechanism underlying the interaction of the dislocations with theγ′-particles changed; initially the particles were intersected by superdislocations; later they were encircled by single dislocations. The discontinuousγ′-phase precipitation which occurred on aging the material after quenching from 1280?C (in the case of fine-grained samples) was ascribed to the fact that insufficient carbon was available to provide carbide particles for pinning the grain boundaries.  相似文献   

16.
We report the effect of using moderate hydrostatic pressure, 40–140?MPa, at moderate temperature (38–58°C) to inactivate Bacillus subtilis spores in McIlvaine's citric phosphate buffer at pH 6. We have investigated several parameters: pressure applied, holding time, pressure cycling, and temperature. The kinetics of spore inactivation is reported. The results show that spore inactivation is exponentially proportional to the time the sample is exposed to pressure. Spore germination and inactivation occur at the hydrostatic pressures/temperature combinations we explored. Cycling the pressure while keeping the total time at high pressure constant does not significantly increase spore inactivation. We show that temperature increases spore inactivation at two different rates; a slow rate below 33°C, and at a more rapid rate at higher temperatures. Increasing pressure leads to an increase in spore inactivation below 95?MPa; however, further increases in pressure give a similar rate kill. The time dependence of the effect of pressure is consistent with the first-order model (R2?>?0.9). The thermal resistance values (ZT) of B. subtilis spores are 30°C, 37°C, and 40°C at 60, 80, 100?MPa. The increase in ZT value at higher pressures indicates lower temperature sensitivity. The pressure resistance values (ZP) are 125, 125 and 143?MPa at 38°C, 48°C, and 58°C. These ZP values are lower than those reported for B. subtilis spores in the literature, which indicates higher sensitivity at pressures less than about 140?MPa. We show that at temperatures <60°C, B. subtilis spores are inactivated at pressures below 100?MPa. This finding could have implications for the design of the sterilization equipment.  相似文献   

17.
18.
19.
The gettering behavior of 1 MeV?C implantation induced defects for Au (1.5 MeV, 2.2×1015 cm-2), implanted into FZ Si(111), has been investigated using Rutherford backscattering spectrometry and cross-sectional transmission electron microscopy. The gettering efficiency of the C implanted layer has been studied as a function of C dose, annealing temperature and time. For a C dose of 2×1016 cm-2, a 2 h anneal at 950 °C has been found to result in a gettering efficiency going beyond ?90%. Thermal stability of the gettered Au in the C implanted layer has subsequently been investigated over a temperature range of 950–1150 °C using isochronal annealing. The gettered amount has been found to be stable up to 1050 °C beyond which there is a release. We have observed nanovoids in the C implanted layer surrounded by ?-SiC precipitates along with patches of a-SiC. Up to about 1050 °C, these nanovoids act as efficient gettering centers beyond which they seem to release the trapped Au. Four distinct regimes in annealing temperature with different mechanisms for Au gettering have been observed.  相似文献   

20.
High pressure thermal (HPT) processing is a candidate technology for the production of safe and stable food. However, little is known about the effect of HPT or high hydrostatic pressure (HHP) treatments at ambient temperature on the variability of times to detect growth from individual spores. We investigated this effect by treating Clostridium botulinum type E spores with HHP (200–600?MPa, 20°C) and HPT (600?MPa, 80°C and 800?MPa, 60°C). Our results indicate that the mean detection times increase and the frequency distribution shifts toward longer times when HHP treatment intensity is increased. HPT treatments result in a highly scattered distribution. In contrast, pressure levels ≤300?MPa decrease detection times and heterogeneity of their distribution, which could lead to an increase in the potential risk originating from C. botulinum type E spores. Data provided here could help to refine risk assessment regarding this important food intoxicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号