首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Spinel ferrite having composition Ni0.4Co0.4Mg0.2Fe2O4 was prepared by sol-gel method. X-ray diffraction result indicates that the ferrite sample has a cubic spinel type structure. FT-IR showed two absorption bands (ν1 and ν2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. Complex impedance properties have been investigated in 200–420 K temperature range with varying frequency between 40 and 107 Hz. Frequency and temperature dependency of imaginary part of permittivity (?″) and dielectric loss (tanδ) has been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions. Activation energy has been estimated from both temperature dependency of dc conductivity and relaxation time data, which indicates that the relaxation process and conductivity have the same origin. Nyquist plots of impedance show semicircle arcs for sample and an electrical equivalent circuit has been proposed to explain the impedance results.  相似文献   

2.
Ba2Zn2Fe12O22 was synthesized by solid state reaction technique. The temperature and frequency dependent electrical properties and complex impedance spectroscopy were analysed. Complex modulus formalism shows the existence of high resistance and small capacitance of the material for the short range relaxation. The presence of non-Debye type relaxation is revealed from Nyquist plots and enabled to separate the contribution from bulk and grain boundary effect in the material. Further, the ac electrical conductivity of the material was well agreed with the Jonscher's universal power law.  相似文献   

3.
The dielectric properties, dc and ac electrical resistivities of Mg substituted Ni–Cu ferrites with general formula Ni0.5Cu0.5−xMgxFe2O4 (0.0≤x≤0.5) have been investigated as a function of frequency, temperature and composition. ac resistivity of all the samples decreases with increase in the frequency exhibiting normal ferrimagnetic behavior. The frequency dependence of dielectric loss tangent showed a maximum in between 10 Hz and 1 kHz in all the ferrites. The conductivity relaxation of the charge carriers was examined using the electrical modulus formulism, and the results indicate the presence of the non-Debye type of relaxation in the prepared ferrites. Similar values of activation energies for dc conduction and for conductivity relaxation reveal that the mechanism of electrical conduction and dielectric polarization is the same in these ferrites. A single ‘master curve’ for normalized plots of all the modulus isotherms observed for a given composition indicates that the distribution of relaxation time is temperature independent. The saturation magnetization and coercivity as calculated from the hysteresis loop measurement show striking dependence on composition.  相似文献   

4.
ABSTRACT

Nanocrystalline Ni0.4Cu0.3Zn0.3Fe2O4 ferrites doped with TiO2 (0–10?wt %) were prepared by the sol-gel method. Elastic properties of synthesized samples were studied with the help of ultrasonic pulse transmission method. The elastic constants initially increase with an increase in TiO2 up to 1?wt % and then decline. LCR-Q meter was used to study the dielectric properties within 50?Hz to 5?MHz range of the frequency. The dielectric constant (?′) and dielectric loss tangents were decreased continuously with increased frequency for all the selected samples at room temperature revealing normal dielectric behavior of ferrites. Also, the AC conductivity was increased with an increase in the frequency for all the selected samples. Cole-Cole plots were obtained for all investigated samples and showed single semicircle which indicates that the electrical conduction process appears only due to grain boundaries.  相似文献   

5.
Polycrystalline ferrites with general formula Co0.5CdxFe2.5−xO4 (0.0?x?0.5) were prepared by sol-gel method. The dielectric properties ε′, ε″, loss tangent tan δ and ac conductivity σac have been studied as a function of frequency, temperature and composition. The experimental results indicate that ε′, ε″, tan δ and σac decrease as the frequency increases; whereas they increase as the temperature increases. These parameters are found to increase by increasing the concentration of Cd content up to x=0.2, after which they start to decrease with further increase in concentration of Cd ion. The dielectric properties and ac conductivity in studied samples have been explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model and the hoping between adjacent Fe2+ and Fe3+ as well as the hole hopping between Co3+and Co2+ ions at B-sites. The values of activation energies Ef for conduction process are determined from Arrhenius plots, and the variations in these activation energies as a function of Cd content are discussed. The complex impedance analysis is used to separate the grain and grain boundary of the system Co0.5CdxFe2.5−xO4. The variations of both grain boundary and grain resistances with temperature and composition are evaluated in the frequency range 42 Hz-5 MHz.  相似文献   

6.
Low temperature Mössbauer and AC susceptibility have been used to study relaxation phenomena in nano-sized particles of Cr0.25Co0.25Zn0.5Fe2O4. From these studies, the energy density constant for this system has been estimated to be 4 x 106 erg/cm3. Cation distribution has also been determined and the observed results are correlated to calculated relaxation times.  相似文献   

7.
Co-Zn ferrite samples of the system Co1-xZnxFe2O4 (x = 0, 0.2, 0.3, 0.5, 0.6 and 0.8) were prepared using the usual ceramic double sintering technique. Thermal conductivity and specific heat were measured at different temperatures for different compositions. The effect of Co-60 γ-irradiation dose (106 rad) on the thermal conductivity and specific heat were studied.  相似文献   

8.
Polyaniline(PANI)/LiNi0.5La0.08Fe1.92O4 nanocomposite was synthesized by an in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The dielectric properties of a PANI/LiNi0.5La0.08Fe1.92O4 (10 wt% weight ratio of LiNi0.5La0.08Fe1.92O4 to aniline monomer) nanocomposite were investigated in the frequency range of 106–109 Hz. The dielectric constant (?′) and dielectric loss (?″) were frequency dependent, having relatively high values at low frequency and decreasing with increasing frequency. The values of ?′ and ?″ of PANI/LiNi0.5La0.08Fe1.92O4 nanocomposite were found to be lower than those of the pristine PANI. Electric modulus analysis was carried out to understand the electrical relaxation process.  相似文献   

9.
Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co(1−x)ZnxFe2O4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co(1−x)ZnxFe2O4 nanoparticles. X-ray diffraction patterns of Co(1−x)ZnxFe2O4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe2O4. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co(1−x)ZnxFe2O4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM, respectively, decrease with the increase of the Zn at%. Finally, our magnetic nanoparticles are not very hard magnetic materials given that the hysteresis loop is small and for this reason Co(1−x)ZnxFe2O4 nanoparticles are considered as soft magnetic material.  相似文献   

10.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

11.
Polyaniline/Zn0.5Cu0.5Fe2O4 nanocomposite was synthesized by a simple, general and inexpensive in-situ polymerization method in w/o microemulsion. The effects of polyaniline coating on the magnetic properties of Zn0.5Cu0.5Fe2O4 nanoparticles were investigated. The structural, morphological and magnetic properties of as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM) and magnetic measurements. The morphology analysis confirmed that polyaniline was deposited on the porous surface of magnetic Zn0.5Cu0.5Fe2O4. It was shown that the saturation magnetization and coercivity of Zn0.5Cu0.5Fe2O4 decreased after polyaniline coating, which can be interpreted by the interparticle dipole–dipole interactions that contributed to magnetic anisotropy and changed the magnetic properties of the nanoparticles. PACS  74.25.Ha; 81.05.-t; 81.05.Lg  相似文献   

12.
Observation of magnetic antiresonance phenomenon is reported in 3D opal nanocomposite with embedded ferrite particles. Antiresonance at microwave frequencies of millimeter waveband was observed. It results in a sharp maximum of the reflection coefficient of an electromagnetic wave. Measurements were carried out in the frequency range from 26 to 38 GHz for two compositions of embedded ferrite particles, namely, the Co0.5Zn0.5Fe2O4 and Ni0.5Zn0.5Fe2O4. The physical nature of antiresonance is discussed.  相似文献   

13.
By the electrospinning and calcination techniques, we have prepared uniform nanofibers of Co1−x Zn x Fe2O4 (0.0≤x≤0.5) ferrites with diameters of 110–130 nm. The Co1−x Zn x Fe2O4 nanofibers are single-phase spinels and the lattice constant with Zn content deviates from the Vegard’s law for these Co1−x Zn x Fe2O4 nanofibers. The Co1−x Zn x Fe2O4 nanocrystal grains by which are built nanofibers increase with calcination temperature. Variations of coercivity and saturation magnetization with calcination temperature can be explained in terms of the grain-size (D) effect. The coercivity (H c) of Co0.5Zn0.5Fe2O4 nanofibers varies as D 0.65 and basically follows the predicted D 2/3 dependence based on the random anisotropy model in a D range below the single-domain size around 40 nm. The saturation magnetization of Co1−x Zn x Fe2O4 nanofibers initially increases with increasing Zn content, reaches a maximum value at x=0.3 and then decreases with further increase of Zn content, while the coercivity exhibits a continuous reduction with the increase of Zn content.  相似文献   

14.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

15.
Ba0.5Sr0.5[CoxZn0.2-x]Fe0.8O3?C??, (x?=?0, 0.04, 0.08, 0.12) cathode formulations were successfully synthesized by solid state reactions and the effect of cobalt doping at Zn site of Ba0.5Sr0.5Zn0.2Fe0.8O3?C?? (BSZF0.2) on the electrical conductivity, the polarization resistance and electrochemical behavior was evaluated. X-ray diffraction patterns indicate that a single cubic perovskite phase of Ba0.5Sr0.4Co0.8Fe0.2O3?C?? oxide is successfully obtained. Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3?C?? (BSCZF0.16) exhibited a high electrical conductivity of 10 S/cm at 400 °C in comparison to the BSZF0.2 showing 5.5 S/cm. Further, BSCZF0.16 also possess a low polarization resistance as low as 0.22, 0.38, 0.87, and 1.55 ?? cm2 at 750, 700, 650, and 600 °C in air, respectively. Accordingly, a low activation energy value of 149.8 kJ/mol for BSCZF0.16 in comparison to 159.4 kJ/mol for BSZF0.2 indicates high catalytic efficiency. Enhancement of desirable properties such as electrical conductivity in combination with low-polarization resistance and low-activation energy values can be attributed to the coexistence of Co and Zn in the B-site of BSCZF0.16 leading to the multivalent states which contributes to the enhanced electron transport properties demonstrating BSCZF0.16 as a better cathode for intermediate temperature solid oxide fuel cells applications.  相似文献   

16.
Mn0.5Zn0.5Fe2O4 nanoparticles (10-30 nm) have been prepared via mechanochemical processing, using a mixture of two single-phase ferrites, MnFe2O4 and ZnFe2O4. SQUID measurements (field-cooled magnetization curves and hysteresis loops) were performed to follow the mechanically induced evolution of the MnFe2O4/ZnFe2O4 mixture submitted to the high-energy milling process. The resulting single MnZn nanoferrite phase was characterized by SQUID (M-H curve), Faraday balance (M-T curve) and transmission electron microscopy. The magnetic characteristics of the mechanosynthesized material were compared with those of bulk Mn0.5Zn0.5Fe2O4. It was found that the saturation magnetization of nanostructured Mn0.5Zn0.5Fe2O4 (87.2 emu/g) is lower than that of the bulk Mn0.5Zn0.5Fe2O4, but, the Néel temperature of the sample (583 K) is higher than that of the bulk Mn0.5Zn0.5Fe2O4.  相似文献   

17.
Single phase perovskite CaTiO3 has been synthesized by conventional solid state reaction technique. The ceramic was characterized by XRD at room temperature and its Rietveld refinement inferred orthorhombic crystal structure with the space group Pbnm. The field dependence of dielectric relaxation and conductivity was measured over a wide frequency range from room temperature to 673 K. Analysis of Nyquist plots of CaTiO3 revealed the contribution of many electrically active regions corresponding to bulk mechanism, distribution of grain boundaries and electrode processes. The dc conductivity depicted a semiconductor to metal type transition. Frequency dependence of dielectric constant (ε′) and tangent loss (tan δ) show a dispersive behavior at low frequencies and is explained on basis of Maxwell-Wagner model and Koop's theory. Both conductivity and electric modulus formalisms have been employed to study the relaxation dynamics of charge carriers. The variation of ac conductivity with frequency at different temperatures obeys the universal Jonscher's power law (σac α ωs). The values of exponent ‘s’ lie in the range 0.13 ≤ s ≤ 0.33, which in light of CBH model suggest a large polaron hopping type of conduction mechanism.  相似文献   

18.
《Current Applied Physics》2010,10(3):917-922
Polycrystalline CaBi4Ti4O15 ceramic has been prepared through a modified chemical reaction technique. Room temperature X-ray diffraction (XRD) analysis shows the formation of a single phase orthorhombic perovskite structure. Simultaneous analysis of the complex impedance (Z1), and electric modulus (M1) spectroscopy was carried in the temperature range of 100–850 °C. The dielectric relaxation is found to be of non-Debye type. The Nyquist plot shows the negative temperature coefficient of resistance type behavior. Two different conduction mechanisms are may be due to: (a) the dielectric relaxation processes due to localized conduction associated with oxygen vacancy; and (b) the non-localized conduction corresponding to long range conductivity associated with extrinsic mechanisms fundamentally associated due to the chemical inhomogeneity caused due to the difference in the ionic environment of Ca2+ and Bi3+ and their sharing in the A site of perovskite and [Bi2O2]2+ slabs. Different conductivity components are recognized inside the grain: long range dc conductivity at low frequency region, a capacitive behavior at higher frequencies, and a universal power law behavior in an intermediate-frequency region where grain boundary contributions are neglected.  相似文献   

19.
Y Fe0.5Cr0.5O3 ceramics have been synthesized by a conventional solid-state reaction. Powder X-ray diffraction shows that this compound possesses an orthorhombic structure with Pnma space group. It exhibits a high magnetic transition temperature at around 250 K with weak ferromagnetic behavior below this temperature. A dielectric relaxation following the Arrhenius law found in the Y Fe0.5Cr0.5O3 compound can be attributed to the charge carrier hopping conduction.  相似文献   

20.
[N(CH3)3H]2ZnCl4 has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry and impedance spectroscopy. The [N(CH3)3H]2ZnCl4 hybrid compound is obtained by slow evaporation at room temperature and found to crystallize in the orthorhombic system with Pnma space group. Five-phase transitions at low temperature were detected by differential scanning calorimetry measurements. The analysis of Nyquist plots has revealed the contribution of three electrically active regions corresponding to the bulk mechanism, distribution of grain boundaries and electrode processes. The dielectric relaxation is described by a non-Debye model. The study of the dielectric constants ?′, ?″ and loss tangent tan (δ) with frequency exhibits a distribution of relaxation times. The complex modulus plots have confirmed the presence of grains and grain boundaries as well as a non-Debye type of relaxation in the material. Thermodynamic parameters such as the free energy for dipole relaxation ΔF, the enthalpy ΔH and the change in entropy ΔS have been determined with the help of the Eyring theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号