首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general expressions for the compliance , Young's modulus E(h k l) and Poisson's ratio υ(h k lθ) along arbitrary loading direction [h k l] are given for cubic crystals. The representation surface for which the length of the radius vector in the [h k l] direction equals to E(h k l) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions , and equals to υ(100, θ), υ(110, θ) and υ(111, θ) for example, are constructed for six FCC metals Ag, Al, Au, Cu, Ni, Pb and seven BCC metals Cr, Fe, Mo, Nb, Ta, V, W.  相似文献   

2.
We present calculations of Young's modulus, the shear modulus, and Poisson's ratio as a function of direction in the (100) and (110) planes of the B2 phase of a Ti50Ni48Fe2 single crystal. The calculations were done on the basis of our measurements of the velocities of transverse and longitudinal ultrasonic waves propagating in the indicated alloy at atmospheric pressure and for a hydrostatic pressure of 0.6 GPa at a temperature of 298 K. We have shown that in contrast to the effect of temperature, as the pressure is reduced along the pathway to the martensitic transformation B2 R, application of pressure to the alloy found in the same pretransitional state increases the anisotropy of the crystal lattice.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 45–49, March, 1995.  相似文献   

3.
主要介绍了根据动态法测量原理设计的新型杨氏模量自动测量仪,此仪器创新性地采用全自动扫频技术,实现了金属材料杨氏模量的全自动测量,并且增加了虚假共振的判断和品质因素的测量,提高了测量结果的可靠性.  相似文献   

4.
Nanoporous alumina membranes containing parallel regular pores of uniform size and normal to substrate surface were fabricated by anodically oxidizing high purity aluminum foils in acid solutions. The continuous out-of-plane displacement and current load of the porous membranes were obtained through bulge test combining time sequence speckle pattern interferometry (TSSPI) observation system. Then the deformation of whole field under different loads was deduced through point-to-point scan analysis and the elastic modulus was calculated through an analytical model. Measurement of mechanical properties indicates unusual mechanical behavior of these anodic alumina films compared with bulk alumina materials or dense alumina films. This method is useful and convenient for mechanical test on membranes with such structure and bring further understanding on connecting of micro–meso structure and mechanical properties.  相似文献   

5.
通过测量悬臂梁自由阻尼振动频率等参数来计算梁状材料的杨氏模量.实验通过精心设计,涉及并运用了力传感器、惠斯通电桥、数字存储示波器、计算机接口、快速傅里叶变换和LabVIEW虚拟仪器等知识和内容.  相似文献   

6.
In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.  相似文献   

7.
Activated alumina used in dehumidification should be regenerated at more than 110 °C temperature, resulting in excessive energy consumption. Comparative experiments were conducted to study the feasibility and performance of ultrasonic assisted regeneration so as to lower the regeneration temperature and raise the efficiency. The mean regeneration speed, regeneration degree, and enhanced rate were used to evaluate the contribution of ultrasound in regeneration. The effective moisture diffusivity and desorption apparent activation energy were calculated by theoretical models, revealed the enhanced mechanism caused by ultrasound. Also, we proposed some specific indexes such as unit energy consumption and energy-saving ratio to assess the energy-saving characteristics of this process. The unit energy consumption was predicted by artificial neural network (ANN), and the recovered moisture adsorption of activated alumina was measured by the dynamic adsorption test. Our analysis illustrates that the introduction of power ultrasound in the process of regeneration can reduce the unit energy consumption and improve the recovered moisture adsorption, the unit energy consumption was decreased by 68.69% and the recovered moisture adsorption was improved by 16.7% under 180 W power ultrasound compared with non-ultrasonic assisted regeneration at 70 °C when initial moisture adsorption was 30%. Meanwhile, an optimal regeneration condition around the turning point could be obtained according to the predictive results of ANN, which can minimize the unit energy consumption. Moreover, it was found that a larger specific surface area of activated alumina induced by ultrasound contributed to a better recovered moisture adsorption.  相似文献   

8.
Laser-ultrasound resonance spectroscopy, a non-contact ultrasonic technique, was used to determine reliably and rapidly the crystallographic texture, the average plastic strain ratio, and the thickness of sheet metal on the production line. As with laser-ultrasonics, a short laser pulse is used to generate a wide-band pulse of ultrasound and a laser interferometer is used for its detection. In this paper, a large number of echoes are collected and analyzed together using Fourier techniques to measure the natural resonance frequencies in the thickness of the sheet. One longitudinal and two shear resonance frequencies were measured together with their harmonics. From these frequencies, two crystallographic orientation distribution coefficients, W(400) and W(420), are obtained, as well as a highly accurate measurement of the sheet thickness that is corrected for changes in ultrasonic velocity caused by texture variations. Using these coefficients, the average and in-plane twofold and fourfold variations of the plastic strain ratio, respectively r delta(2)r, and delta(4)r, can be evaluated. These parameters are indications of the formability of metals sheets, which is of industrial interest. Measurements on 1 mm thick, low carbon steel sheets have shown the following measurement accuracies: r to within +/-0.08, delta(2)r, and delta(4)r to within +/-0.1, and thickness to better than +/-1 microm. On-line tests at LTV Steel Company showed that the sensitivity of the apparatus is sufficient to detect systematic variations in texture along the length of similar production coils and that the on-line repeatability for r was of order +/-0.02.  相似文献   

9.
Aluminium (Al) alloys such as 2024-T3 are widely used in industry as low weight construction materials with excellent mechanical properties. Until recently corrosion protection of Al alloys was carried out with coatings containing hexavalent chromium (Cr6+). However, Cr6+ is a health and environmental hazard and has to be replaced. Intrinsically conducting polymer (ICP) technology is the promising alternative to chromate coating technology because of good corrosion protection properties of ICPs, their moderate cost and good environmental compatibility. In this paper we report successful attempt of making nanocomposite comprised of alumina nanoparticles modified by polypyrrole for the purpose of corrosion protection of Al alloy. Modified nanoparticles were used as coating filler. Coating was designated to perform as an active barrier to electrolyte diffusion. Properties of the coating were examined by adhesion test, electrochemical impedance spectroscopy, X-rays elemental analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy.  相似文献   

10.
We present a study of the compression of polymer-grafted surfaces using the dissipative particle dynamics (DPD) method at constant chemical potential. We demonstrate the importance of performing simulations of compression at fixed chemical potential of the solvent by comparing the simulated force-compression curves at constant chemical potential and density with the experimental profile determined for poly(ethylene-propylene) chains grafted onto mica surfaces in a cyclohexane solvent. The simulated force-distance and friction profiles are presented as a function of the polymer grafting density, the shear rate and the nature of the solvent. We also study the influence of the steepness of conservative potential between polymer segments and the size of the solvent elements (particles) on the form of the force-compression and friction-compression profiles.  相似文献   

11.
对铝、铜和钨在冲击压缩状态下的剪切模量和屈服强度的实验数据进行了综合分析,并与St einberg-Cochran-Guinan(SCG)模型的计算结果进行了比较,结果表明,铝在50 GPa、铜在1 00 GPa、钨在200 GPa冲击压力以内,三种材料的剪切模量和屈服强度随温度和压力的变化 趋势基本相似,即SCG模型的假设Y′pY0=G′pG 0,Y′TY0=G′TG0对这三种材料在上述冲击压力范围内近似成立,利用该模型可以较好地描述材料在冲击压缩 下的本构行为. 关键词: 剪切模量 屈服强度 压力 温度  相似文献   

12.

Objectives

We introduced a harmonic-to-fundamental ratio (HFR) of the radiofrequency (RF) signals that reduces confounding effects of attenuation. We studied whether HFR analysis of RF signals received from contrast microbubbles allows accurate measurement of the left ventricular (LV) cavity area under varying levels of attenuation.

Background

Attenuation is a fundamental problem in ultrasound imaging and limits the use of clinical echocardiography.

Methods

RF data from short axis systolic and diastolic scans were obtained from 14 open-chest dogs following left-atrial bolus of Optison. Attenuation was induced by interposed silicone pads calibrated to induce 7 dB or 14 dB reductions of the backscattered RF signal. RF images were reconstructed from the RF signals, HFR values calculated for each image pixel for 0 dB, 7 dB and 14 dB attenuation conditions, and LV area obtained by summation of “LV cavity pixels”. A reference LV cavity area was obtained from endocardial border tracings in enhanced scans by experts.

Results

Correlation of the HFR-defined and reference areas at systole was R = 0.95, R = 0.94, and R = 0.91 for 0 dB, 7 dB and 14 dB levels of attenuation, respectively, and at diastole was R = 0.95 for 0 dB, 7 dB and 14 dB levels of attenuation. The mean difference from both systolic and diastolic values was <1.45 cm2 (i.e. negligible) in all attenuation settings.

Conclusion

Our novel HFR method supports precise measurement of the LV cavity area in contrast images with simulated high attenuation of ultrasound signals.  相似文献   

13.
In this work, we show that the transmission moiré pattern is two-dimensional autocorrelation of transmission function (2D-ACTF) of two superimposed linear gratings that make a small angle with each other. In this approach, the properties of moiré fringes vs. the relative displacement of the gratings are formulated. By measuring 2D-ACTF of two similar gratings, we evaluate the modulation transfer function (MTF) of the gratings’ generating system. This work is the generalized form of our previous works. The implied MTF measurement method is easier and faster than our previous methods.  相似文献   

14.
We demonstrate the use of photothermal deflection spectroscopy for a simultaneous measurement of absolute minority-species concentration, temperature and flow velocity in a flame from the analysis of a single data trace. The ability to make absolute concentration measurements, as well as the ability to measure three important combustion parameters simultaneously, may make this technique quite useful in many circumstances. Received: 27 August 2002 / Revised version: 26 September 2002 / Published online: 11 December 2002 RID="*" ID="*"Corresponding author. Fax: +1-479/575-4580, E-mail: rgupta@uark.edu  相似文献   

15.
A specially constructed instrument for measuring the low intensity photoluminescence emission spectra of metals is described. It uses low luminescence optical components and dedicated sample mounting techniques. Room temperature measurements agree closely with literature spectra for high-purity gold and are found to be sensitive to 100 ppm impurities. Detailed spectra are presented, which are weakly temperature dependent, for gold, copper and unpolished niobium between room temperature and 100 K. We conclude that this work provides accurate luminescence data for Au from 300 K down to 100 K. Although the (variable temperature) luminescence data for Cu are consistent both with the room temperature experimental data in the literature and theory, we conclude the role of surface adsorbates and/or oxides cannot be ruled out. Theory suggests that Nb has a factor ∼50 lower luminescence intensity than Au and Cu because the real part of the refractive index is a factor ∼5 higher and the density of states ∼2 eV below the Fermi energy is a factor of ∼4 lower than Au and Cu. Measurements are presented for unpolished Nb, but given the lack of signal detection for polished Nb and that theory predicts very weak signals, we conclude that the luminescence signals from pure Nb still remain below the sensitivity of our instrument.  相似文献   

16.
A large solid-angle apparatus consisting of a superconducting solenoid magnet, cylindrical drift chambers and two arrays of lead-glass counters was used to examine particles associated with a high transverse momentum trigger in p-p collisions with three √s values at the CERN ISR. The trigger was given by energy deposition in lead-glass arrays centred at 90°. The trigger transverse momentum range covered was 3 < pT trig < 11 GeVc. Results are given for pout for both individual charged particles, and also for the sum of charged particle momenta in the hemisphere opposite to the trigger. Mean values are then deduced for the parton transverse momentum kT, and for the jet fragmentation momentum jT.  相似文献   

17.
The ability of listeners to detect level differences between two sinusoidal stimuli in a two-interval forced-choice procedure was measured as a function of duration and level in three conditions: (1) the pedestal was fixed in level and the stimuli in the two intervals had the same frequency of either 1 or 2 kHz (fixed-level condition); (2) the pedestal was roved in level over a 20-dB range from trial to trial, but the stimuli still had the same frequency of either 1 or 2 kHz (roving-level condition); and (3) the pedestal was roved in level over a 20-dB range and the two stimuli differed in frequency, such that one was around 1 kHz while the other was around 2 kHz (across-frequency condition). In the fixed-level conditions, difference limens decreased (improved) with both increasing duration and level, as found in previous studies. In the roving-level conditions, difference limens increased and the dependence on duration and level decreased. Difference limens in the across-frequency conditions were generally highest and showed very little dependence on either stimulus duration or level. The results may be understood in terms of different internal noise components with additive variances: In the fixed-level conditions, sensation noise, which is dependent on stimulus attributes such as duration and level, is dominant. In more difficult conditions, where trace-memory and/or across-channel comparisons are required, a more central, stimulus-independent noise dominates.  相似文献   

18.
We report an accurate study on sonocatalytic properties of different ZnO micro and nanoparticles to enhance OH radical production activated by cavitation. In order to investigate some of the still unsolved aspects related to the piezocatalytic effect, the degradation of Methylene Blue and quantification of radicals production have been evaluated as function of different ultrasonic frequencies (20 kHz and 858 kHz) and dissolved gases (Ar, N2 and air). The results shown that at low frequency the catalytic effect of ZnO particles is well evident and influenced by particle dimension while at high frequency a reduction of the degradation efficiency have been observed using larger particles. An increase of radical production have been observed for all ZnO particles tested while the different saturating gases have poor influence. In both ultrasonic set-up the ZnO nanoparticles resulted the most efficient on MB degradation revealing that the enhanced radical production may arise more from bubbles collapse on particles surface than the discharge mechanism activate by mechanical stress on piezoelectric particles. An interpretation of these effects and a possible mechanism which rules the sonocatalytic activity of ZnO will be proposed and discussed.  相似文献   

19.
Abstract

Because of the crucial importance of structural fluctuations for function and stability of proteins, there is a strong interest for the relationships between structural fluctuations, the parameters of protein denaturation and the kinetics of H/D-exchange. Structural fluctuations can be described by volume and entropy fluctuations and these quantities are accessible via the isothermal compressibility, the thermal expansion and the isobaric heat capacity.

Our aim is to present the principal problem concerning the experimental procedures to answer those questions using lysozyme and α-lactalbumin. Whereas the transition parameters and the kinetics of the H/D-exchange were obtained using FTIR spectroscopy, the adiabatic compressibility was obtained by a combination of ultrasonic velocimetry and densitometry. It could be shown that the stability of the investigated proteins is correlated with reduced volume fluctuations. The expected direct correlation between H/D exchange rates and structural fluctuations could not be seen and it is assumed that the interactions are more complex than from the intuitive point of view.  相似文献   

20.
The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370 ± 96 nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50 nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15 dB at a concentration of 0.045 mg/mL at a frequency of 10 MHz. Loss of signal for air-filled nanocapsules was 2 dB after 30 min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号