首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Employing atomic force microscopy,transmission electron microscopy and the second harmonic generation technique,we carefully explore the structural properties of 6-unit-cell-thick La_(0.8)Sr_(0.2)MnO_3 films grown on SrTiO_3 with atomically flat TiO_2-terminated terraces on the surface.The results clearly demonstrate that the terraces on the surface of TiO_2-terminated SrTiO_3 can improve the layer-by-layer epitaxial growth of the manganite films,which results in uniform film coverage at the beginning of growth and thus reduces the substrate-induced disorder at or near the interface.Comparing the magnetic and transport properties of La_(0.8)Sr_(0.2)MnO_3 films with the thicknesses varying from 6 unit cells to 80 unit cells grown respectively on as-received SrTiO_3 and TiO_2-terminated SrTiO_3,it is found that these atomically flat terraces on the surface of TiO_2-terminated SrTiO_3 can greatly enhance the Curie temperature and conductivities of the ultrathin La_(0.8)Sr_(0.2)MnO_3 films with thickness less than 50 unit cells,while no obvious difference is detected in the magnetic and transport properties of the 80unit-cell thick films.  相似文献   

2.
Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at lowtemperature are investigated by scanning tunnelling microscopy (STM) andreflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rateproduces films with different morphologies, which is the result of Ostwald ripening.  相似文献   

3.
We investigated the epitaxial growth of thin KCl films on Ag(100) by spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunnelling microscopy (STM). The structural relation of the (100)-oriented KCl film with respect to the Ag(100) surface is incommensurate, nevertheless the structural quality is very high and terraces with an average diameter of 250 Å are obtained. The unit cells of KCl and Ag(100) are aligned, and there is no rotational mosaicity as present in the case of NaCl on Ag(100). We attribute this to a small interaction between KCl and Ag(100) and growth starting at step edges of the metal substrate. In order to demonstrate the high structural quality of the KCl films, we deposited a monolayer of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) on these films. We obtained the identical monolayer structure that was observed earlier on bulk KCl. We thus suggest that KCl/Ag(100) is ideal for surface experiments on thin dielectric films.  相似文献   

4.
A. Krupski 《Surface science》2011,605(13-14):1291-1297
Scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES) have been used to investigate the growth behavior of ultra-thin Sn films on a Mo(110) surface at room temperature. An analysis of STM and AES measurements indicates that layer-by-layer growth (Frank-van der Merwe mode) for the first two layers of Sn is observed. For submonolayer coverage, tin prefers to nucleate randomly and creates one atom high islands on Mo terraces. In the completed first and second layer, no ordered regions were observed. As the sample is post-annealed to 800 K, the rearrangement of an existing film suggests a Sn–Mo surface alloy formation.  相似文献   

5.
李荣斌 《物理学报》2009,58(2):1287-1292
采用化学气相沉积(CVD)技术,以高温高压(HTHP)合成的(100)金刚石和p型(100)Si为衬底制备了硫掺杂和硼-硫共掺杂金刚石薄膜,利用原子力显微镜(AFM)、扫描隧道显微镜(STM)及隧道电流谱(CITS)等手段分析同质和异质外延CVD掺杂金刚石薄膜的结构和性能.结果表明:异Si衬底上CVD金刚石的形核密度低,薄膜表面比较粗糙,粗糙度达到18.5nm;同质HTHP金刚石衬底上CVD金刚石薄膜晶粒尺寸约为10—50nm,表面平整,表面粗糙度为1.8nm.拉曼测试和电阻测量的结果显示,在HTHP金刚 关键词: 金刚石 掺杂 外延  相似文献   

6.
何为  詹清峰  王德勇  陈立军  孙阳  成昭华 《中国物理》2007,16(11):3541-3544
Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.[第一段]  相似文献   

7.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

8.
Scanning tunnelling microscopy (STM) study and modification of hydrogen (H)-passivated Ge(100) surfaces have been investigated. Thermal oxidation procedures were used to minimise surface roughness. Ge samples were passivated in HF solution after thermal oxidation. STM and atomic force microscope (AFM) imaging showed that, using HF etching after thermal oxidation, we can obtain a natural H-passivatedtopographically and chemically flat Ge(100) surface. The root-mean-square (rms) roughness ofa H-passivatedGe(100) surface measured both by STM and AFM is less than 2 ?. Electric properties of H-passivatedGe(100) surfaces were studied by scanning tunnelling spectroscopy (STS) in nitrogen ambient. STS showed that the H-passivated Ge surfaces were not pinned. Modification on H-passivated Ge(100) surfaces was carried out using STM by applying an electric voltage between the sample and tip in air. Modified features were characterised by STM and AFM imaging. On the H-passivated Ge(100) surfaces, stable, low-voltage, nanometer-scale modified features can be produced.  相似文献   

9.
Continuous, atomically flat, and epitaxial Bi(1 1 1) films could be grown on Si(0 0 1). The inherent strain of 2.3% between the Bi(1 1 1) and Si(0 0 1) lattices is relieved by the formation of a grating like one-dimensional misfit dislocation array at the heterointerface. The lattice distortions around each dislocation give rise to a pronounced height depression Δh = 0.12 nm of the surface, which results in a spot splitting in low-energy electron diffraction and a height contrast in scanning tunneling microscopy (STM). Using STM surface profiles across these depressions, the Burgers vector of the underlying isolated non-interacting dislocations is estimated to be 0.377 nm. For thicker Bi films the ordering of the dislocation network is increased. This reflects an increase of repulsive interaction between neighboring dislocations.  相似文献   

10.
We used scanning tunneling microscopy (STM) to characterize PdO(101) thin films grown on Pd(111), and the structural changes that occur during isothermal decomposition. We find that the PdO(101) thin films have high-quality surface structures that are characterized by large, crystalline terraces with low concentrations of point defects. Small domains of single-layer oxide are also present on the top layer of relatively thick PdO(101) films grown at 500 K. The thinner PdO(101) films exhibit negligible quantities of such domains, apparently because new domains agglomerate rapidly as the film thickness decreases. We find that the isothermal decomposition rate of a PdO(101) film at 720 K exhibits an autocatalytic regime in which the rate of oxygen desorption increases as the oxide decomposes. Our STM results demonstrate that reduced sites created during oxide decomposition catalyze further PdO decomposition, and reveal strong kinetic anisotropies in the decomposition. The kinetic anisotropies produce one-dimensional reaction fronts that propagate preferentially along the atomic rows of the PdO(101) surface, resulting in the formation of long chains of reduced sites. We also find that reduced sites promote oxygen recombination in neighboring rows of the Pd(101) structure, causing loops and larger aggregates of reduced sites to form. The promotion of decomposition across the atomic rows can qualitatively explain the autocatalytic desorption kinetics. Finally, the STM images provide evidence that underlying PdO(101) layers transfer oxygen to reduced surface domains, thus producing large domains of PdO(101) islands that coexist with reduced domains as well as the larger PdO(101) terraces of the initial surface. Re-oxidation of the surface acts to sustain the autocatalytic decomposition kinetics, and provides a mechanism for oxygen atoms to ultimately evolve from the subsurface of the PdO(101) film.  相似文献   

11.
Clean and oxidized surfaces of CoAl(1 0 0) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS), and scanning tunnelling microscopy (STM). The regrowth or step flow of terraces was observed at 1150 K. The correlation between the growth of oxide and the step flow on the CoAl(1 0 0) surface is discussed in this paper.  相似文献   

12.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

13.
Reproducible and strong diode-like behaviour is observed for molecular films of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) on n-type Si(111)- 7×7 surfaces studied by scanning tunnelling microscopy (STM) and spectroscopy (STS) at 77 K. The mechanism behind the rectification is likely to be related to the electron distribution at the molecule-silicon interface. We suggest that the adsorption of the molecular layer profoundly modifies the electronic structure of the Si(111)- 7×7 surface.  相似文献   

14.
We have investigated the initial stages of the growth of pentacene thin films on the Au(1 0 0) substrate using synchrotron radiation photoelectron spectroscopy (PES), near edge X-ray absorption fine structure (NEXAFS) and scanning tunnelling microscopy (STM). Results indicate a well-ordered structure with the pentacene molecules adopting a predominantly flat orientation with respect to the substrate for coverages of less than three monolayers. NEXAFS and photoemission data indicates the presence of a second molecular orientation for thicker films, with the introduction of a slight tilting away from planar bonding geometry at higher pentacene coverages. STM images of coverages less than three monolayers indicate a well-ordered pentacene structure allowing for the calculation of pentacene unit cell parameters. The pentacene molecular rows adopt a side-by-side bonding arrangement on the surface. For pentacene deposited at room temperature, step edges were observed to act as nucleation centres for film growth. Annealing of the substrate to 373 K was found to remove excess molecules and improve film quality, but did not otherwise change the bonding geometry of the pentacene with respect to the surface.  相似文献   

15.
By means of variable-temperature scanning tunneling microscopy and spectroscopy we studied the thickness-dependent roughening temperature of Pb films grown on Cu(111), whose electronic structure and total energy is controlled by quantum well states created by the spatial confinement of electrons. Large scale STM images are employed to quantify the layer population, i.e., the fraction of the surface area covered by different Pb thicknesses, directly in the real space as a function of temperature. The roughening temperature oscillates repeatedly with bilayer periodicity plus a longer beating period, mirroring the thickness dependence of surface energy calculations. Conditions have been found to stabilize at 300 K Pb films of particular magic thicknesses, atomically flat over microns.  相似文献   

16.
A scanning tunneling microscope (STM) is used to create changes in the surface relief of titanium dioxide films containing adsorbed silver ions. Structures measuring ∼10 nm, which presumably consist of silver particles, form on the film surface as a result of the application of short pulses with an amplitude ⩾15 V to an STM probe operating in the tunneling-current regime. Zh. Tekh. Fiz. 67, 72–76 (June 1997)  相似文献   

17.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

18.
Meng He 《Applied Surface Science》2007,253(14):6080-6084
La0.9Sr0.1MnO3 (LSMO) ultrathin films with various thickness (in the range of 5-50 unit cells) are grown on (0 0 1) substrates of the single-crystal SrTi0.99Nb0.01O3 by laser molecular-beam epitaxy (laser-MBE), and the surface morphology of these films were measured by scanning tunneling microscopy (STM). STM images of LSMO ultrathin film surface reveal that surface morphology becomes more flat with increasing film thickness. This study highlights the important effect of strain caused by the lattice mismatch between substrates and ultrathin films. And the results should be useful to the investigations on growing manganite perovskite materials.  相似文献   

19.
《Surface science》1996,366(2):L703-L708
We present original scanning tunnelling microscope (STM) images of the first growth stages of crystalline, textured WS2−x thin films (x=0.2−0.4) prepared by reactive RF magnetron sputtering. In the first 10–20 nm of thickness, the films grow in the shape of trigonal pyramids with typical lateral size in the 20 nm range. Step heights of 0.6 nm show that the films grow by molecular layers rather than by complete 2H or 3R polytypic unit cells of c parameters 1.2 or 1.8 nm. The triangular shapes reflect the symmetry of the trigonal prismatic unit and the pyramidal arrangement indicates a rhombohedral stacking. The growth process is three-dimensional, including some spiral growth.  相似文献   

20.
We have used the pseudo-tenfold surface of the orthorhombic Al(13)Co(4) crystal as a template for the adsorption of Cu thin films of various thicknesses deposited at different temperatures. This study has been carried out by means of low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), x-ray photoelectron spectroscopy (XPS) and x-ray photoelectron diffraction (XPD). From 300 to 573 K, Cu adatoms grow pseudomorphically up to one monolayer. At 300 K, the β-Al(Cu, Co) phase appears for coverages greater than one monolayer. For higher temperature deposition, the β-Al(Cu, Co) phase further transforms into the γ-Al(4)Cu(9) phase. Both β and γ phases grow as two (110) domains rotated by 72° ± 1° from each other. Instead of following the substrate symmetry, it is the orientations of the bipentagonal motifs present on the clean Al(13)Co(4)(100) surface that dictate the growth orientation of these domains. The initial bulk composition and structural complexity of the substrate have a minor role in the formation of the γ-Al(4)Cu(9) phase as long as the amount of Al and the Cu film thickness reach a critical stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号