首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Mehdi Hamid  Hao Lyu  Hussein Zbib 《哲学杂志》2018,98(32):2896-2916
Although metallic materials with gradient microstructure exhibit notable performance in harsh environmental conditions, they can also exhibit unusual mechanical behaviour. This is attributed to both grain size and the gradient of grain size distribution in the structure. Metallic materials with a homogenous distribution of grain size follow the traditional Hall-Petch relationship, in which strength increases with decreasing grain size at the expense of ductility. However, studies show that materials with a gradient of grain size microstructure do not follow the Hall-Petch relationship, and thus have improved strength and ductility. This suggests that with creative design and engineering of microstructure, the strength-ductility trade-off can be reduced or prevented.

In this study, we developed and implemented a dislocation density based model to investigate the mechanical behaviour of nano-microstructure. We designed a multi-scale modelling framework, coupling VPSC (Viscoplastic Self Consistent model) with CDD (Continuum Dislocation Dynamics), applying crystal plasticity equations to simulate dislocation interaction in polycrystalline metallic materials. We also developed design parameters and a model to predict the strength and ductility of materials with gradient microstructure.  相似文献   


2.
The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall–Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.  相似文献   

3.
<正>The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties.Therefore,a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application.Up to now,the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments.To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly.In this paper,a novel method,based on the combination model of digital image processing and the finite element method,is proposed to rapidly model the optical properties of the actual photonic crystal fibre.Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled.It is confirmed from numerical results that the proposed method is simple,rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.  相似文献   

4.
The formation of deformation bands with the typically alternating sign of the misorientation across their boundaries is interpreted as spontaneous deformation instability caused by anisotropy of hardening. To analyse the nature of the fragmentation, a model of a rigid-plastic crystal domain deformed by symmetric double slip in a plane-strain compression is considered. The basic reason for the deformation band existence is that a local decrease in number of active slip systems in the bands is energetically less costly than a homogeneous deformation by multislip. However, such model of the bands predicts their extreme orientation and their width tends to zero. This trend is modified by hardening caused by a build up of the band boundaries and by a dislocation bowing (Orowan) stress. The model provides an explanation of observed orientation of the bands, their width and the significant change in the structural morphology seen as the band reorientation occurs at large strains. The predictions are in a favourable agreement with the available observations.  相似文献   

5.
A physically-based, rate and length-scale dependent strain gradient crystal plasticity framework was employed to simulate the polycrystalline plastic deformation at the microscopic level in a large-grained, commercially pure Ni sample. The latter was characterised in terms of the grain morphology and orientation (in the bulk) by micro-beam Laue diffraction experiments carried out on beamline B16 at Diamond Light Source. The corresponding finite element model was developed using a grain-based mesh with the specific grain orientation assignment appropriate for the sample considered. Sample stretching to 2% plastic strain was simulated, and a post-processor was developed to extract the information about the local lattice misorientation (curvature), enabling forward-prediction of the Laue diffraction patterns. The ‘streaking’ phenomenon of the Laue spots (anisotropic broadening of two-dimensional (2D) diffraction peaks observed on the 2D detector) was correctly captured by the simulation, as constructed by direct superposition of reflections from different integration points within the diffraction gauge volume. Good agreement was found between the images collected from experiments and simulation patterns at various positions in the sample.  相似文献   

6.
Abstract

In this work, a new class of thermodynamic-based higher order gradient plasticity theory is proposed and applied to the stretch-surface passivation problem for investigating the material behaviour under the non-proportional loading condition. This paper incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. The stored energy of cold work is considered in the development of the recoverable counterpart of the free energy. The main distinction in this formulation is the presence of the dissipative higher order microstress quantity that is known to give rise to the stress jump phenomenon, which causes a controversial dispute in the field of strain gradient plasticity theory with respect to whether it is physically acceptable or not. The finite element solution for the stretch-surface passivation problem is developed and validated by comparing with three sets of small-scale experiments. Based on the validated finite element solution, the stress jump phenomenon under the stretch-surface passivation condition is investigated with the effects of the various material parameters. The evolution of the free energy and dissipation potentials is investigated at elevated temperatures. The two-dimensional simulation is also given to examine the gradient and grain boundary effect, the mesh sensitivity of the two-dimensional model and the stress jump phenomenon. Finally, some significant conclusions are presented.  相似文献   

7.
王伟  杨博 《物理学报》2012,61(2):064601
针对光子晶体光纤多零色散点、高双折射的应用要求, 设计了一种新型结构的光子晶体光纤, 其纤芯由位于菱形四个角上的圆形空气孔组成. 通过有限元数值分析方法对该种结构光子晶体光纤的色散特性和双折射特性进行数值仿真, 得到色散与波长、色散与纤芯圆孔尺寸、双折射与波长、双折射与纤芯圆孔尺寸的关系. 研究结果表明:在满足光纤传输功率要求的条件下, 光纤的双折射在d1<0.8 μupm 时的性能较好. 同时, 该种结构的光子晶体光纤在芯区直径满足d1=0.4 μupm或 d  相似文献   

8.
V形高双折射光子晶体光纤特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
夏长明  周桂耀  韩颖  刘兆伦  侯蓝田 《物理学报》2011,60(9):94213-094213
本文基于全矢量有限元法,设计了一种V形结构高双折射光子晶体光纤,数值分析结果表明:当光纤的包层孔间距Λ为1.0 μm,包层大空气孔D和小空气孔d分别为0.95 μm,0.7 μm时,在波长为1.55 μm处,该光纤的双折射度B达到1.225×10-2,比传统光纤高约两个数量级. 另外,分别在可见光和近红外波段出现了两个零色散波长,使钛宝石飞秒激光器工作波段(700—980 nm) 处于光纤的反常色散区,为新颖的光子晶体 关键词: 光子晶体光纤 高双折射 有限元法 V形结构  相似文献   

9.
王伟  杨博 《物理学报》2012,61(6):64601-064601
针对光子晶体光纤多零色散点、高双折射的应用要求, 设计了一种新型结构的光子晶体光纤, 其纤芯由位于菱形四个角上的圆形空气孔组成. 通过有限元数值分析方法对该种结构光子晶体光纤的色散特性和双折射特性进行数值仿真, 得到色散与波长、色散与纤芯圆孔尺寸、双折射与波长、双折射与纤芯圆孔尺寸的关系. 研究结果表明:在满足光纤传输功率要求的条件下, 光纤的双折射在d1<0.8 μupm 时的性能较好. 同时, 该种结构的光子晶体光纤在芯区直径满足d1=0.4 μupm或 d1=0.6 μupm时会出现两个零色散点, 这对进一步研制具有多零色散点的光子晶体光纤具有重要的意义.  相似文献   

10.
将辐照硬化理论与晶体塑性理论结合, 运用ABAQUS有限元分析软件模拟辐照后多晶铜的拉伸过程。分析辐照效应对材料屈服强度、硬化过程、晶体变形等力学性能的影响, 研究位错密度的演化及空间分布规律。数值模拟表明: 辐照效应提高多晶铜的屈服应力, 影响不同阶段的硬化和软化现象; 辐照剂量增大导致位错密度增殖总体变缓, 空间不均匀度增大; 晶体的塑性变形及晶体转动也受到辐照的影响, 在相同的应变条件下, 辐照剂量越大, 晶体塑性变形程度越小, 塑性变形分布不均匀度变大, 同时晶体转动程度及转动角离散度增大。  相似文献   

11.
Modal solutions of planar photonic crystal waveguides with rectangular air-holes are presented by using a rigorous full-vectorial finite element-based approach. The effective indices, mode field profiles, spot-sizes, power confinements, modal hybridness, beat lengths and group velocity dispersions are shown for the fundamental and higher order modes of the quasi-TE and TM polarizations.  相似文献   

12.
A dual-guided photonic crystal fiber(PCF) with low and flattened dispersion is designed, which can support a large number of orbital angular momentum(OAM) modes. The properties of the proposed PCF are systematically analyzed through the finite element method. The results show that the proposed PCF can support up to 84 OAM modes with 600 nm bandwidth ranging from 1000 to1600 nm. All values of mode purity are above 91.7%, the isolation parameters are larger than 67 dB and the maximum value up to 145 dB, the lowest confinement loss is only 5×10~(-13) dB·m~(-1).More importantly, the values of dispersion for all modes are less than 40 ps·km~(-1)·nm~(-1), and the lowest dispersion variation is only 0.7 ps·km~(-1)·nm~(-1). These superior optical properties make the proposed PCF have great advantage in stable transmissions of data and long-distance optical fiber communication system with large capacity.  相似文献   

13.
应用全矢量有限元方法,研究大间距Kagome结构空芯光子晶体光纤中纤芯的大小、形状与壁厚对光纤传输损耗谱的影响。结果表明,某些纤芯尺寸会造成包层中的结构缺陷,易使纤芯基模、表面模及包层模之间发生能量耦合,产生较大损耗。而纤芯形状与壁厚的改变会引起表面模式的变化,从而影响发生在基模与表面模之间反向耦合的位置和强度,使光纤传输频带变窄和损耗变大。据此,提出Kagome结构光纤的纤芯设计思路,即纤芯的大小应使包层保持完整的微结构,纤芯形状应与包层中的单元微结构相楔合,纤芯壁厚应与包层中玻璃支柱的宽度相同。  相似文献   

14.
Excitation sculpting, a general method to suppress unwanted magnetization while controlling the phase of the retained signal [T.L. Hwang, A.J. Shaka, Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients, J. Magn. Reson. Ser. A 112 (1995) 275-279] is a highly effective method of water suppression for both biological and small molecule NMR spectroscopy. In excitation sculpting, a double pulsed field gradient spin echo forms the core of the sequence and pairing a low-power soft 180 degrees (-x) pulse with a high-power 180 degrees (x) all resonances except the water are flipped and retained, while the water peak is attenuated. By replacing the hard 180 degrees pulse in the double echo with a new phase-alternating composite pulse, broadband and adjustable excitation of large bandwidths with simultaneous high water suppression is obtained. This "Solvent-Optimized Gradient-Gradient Spectroscopy" (SOGGY) sequence is a reliable workhorse method for a wide range of practical situations in NMR spectroscopy, optimizing both solute sensitivity and water suppression.  相似文献   

15.
孙海 《计算物理》2014,31(5):593-601
运用矢量有限元法对填充右左手材料的矩形屏蔽微带线的色散特性进行比较研究,包括矩形单信号对称屏蔽微带线,矩形单信号不对称屏蔽微带线,矩形双信号对称屏蔽微带线,矩形双信号位置不对称屏蔽微带线,矩形双信号宽度不对称屏蔽微带线以及矩形双信号厚度不对称屏蔽微带线六种情况.讨论这些屏蔽微带线的主模色散特性随填充材料的变化,色散特性的研究有助于矩形屏蔽微带线和左手材料在新型微波器件中的应用.  相似文献   

16.
谐振式压力微传感器因其高精度、高稳定性及准数字输出等特性而广泛应用于气压监测、航空航天等领域。相较于其他结构,差分谐振式具有灵敏度高、线性度好及温度漂移小等优势。然而,要获得差分谐振式压力微传感器的最优性能,仍需解决差分谐振梁灵敏度不匹配的问题。在仿真与实验的基础上,对差分谐振式压力微传感器的灵敏度匹配特性进行了相关研究。根据研究结果,对传感器的结构参数进行了优化设计。两谐振梁的设计灵敏度为46 Hz/kP,实验结果显示中心梁的实际灵敏度为45 Hz/kPa,边梁的实际灵敏度为-44 Hz/kPa,差分输出的线性度高达0.999 999 9。  相似文献   

17.
提出了一种新型的四排短轴渐减椭圆空气孔阵列的单模单偏振光子晶体光纤结构,并以完美匹配层为边界条件采用全矢量有限元方法研究了该光纤的各种特性及其各种参量随入射波长变化规律.研究表明,提出的光子晶体光纤结构是实现更宽带宽、色散平坦、单模单偏振运用的有效方案;在入射光波长为1.550μm时,单模单偏振光子晶体光纤的模式双折射...  相似文献   

18.
Er3NbO7 phosphor was synthesized by sintering a mixture of Er2O3 and Nb2O5 powder in a molar ratio of 3:1 at 1600 °C over 55 h. Optical absorption and emission characteristics of Er3+ ions in the calcined Er3NbO7 powder were investigated and discussed compared with ErNbO4 phosphor and a Z-cut congruent Er (2 mol%):LiNbO3 single crystal. The absorption and emission studies show that, due to different crystal structures, the spectroscopic properties of these niobates have some differences in spectral shape, peak position, and relative intensity, especially at 1.5 μm. The most obvious spectral feature of the Er3NbO7 is that the spectral structure of band instead of peak is observed in its absorption or emission spectrum due to the existence of local structural disorder and multiple Er3+ sites. The Er3NbO4 shows stronger upconversion emission than the single crystal but weaker than the ErNbO4. Experimental results show that energy transfer upconversion and/or excited state absorption play a dominant role in the upconversion emissions, and, at higher pump level (>200 mW), the thermal effect becomes significant and results in drop of the upconversion intensity. The 1.5 μm lifetimes of Er3+ ion in the Er3NbO7, ErNbO4 phosphor, and in the Er:LiNbO3 crystal are measured to be ∼5.3, 2.0, and 2.4 ms, respectively. In combination with the measured Raman spectra, the quantum efficiency, multiphonon nonradiative decay rate, and theoretical radiative lifetime of the 1.5 μm emission of the two powder materials are expected. The differences in upconversion intensity and measured 1.5 μm lifetime between the three materials are explained qualitatively.  相似文献   

19.
An X-ray photoelectron spectroscopy (XPS) study was undertaken of the water/Cu(1 1 0)-system finding non-dissociative adsorption on clean Cu(1 1 0) at temperatures below 150 K. Thermally induced dissociation of D2O is observed to occur above 150 K, similar to the H2O/Ru(0 0 1) system, with an experimentally derived activation barrier of 0.53-0.56 eV which is very close in magnitude to the derived activation barrier for desorption of 0.50-0.53 eV. X-ray and electron induced damage to the water overlayer was quantified and used to rationalize the results of a recent XPS study of the water/Cu(1 1 0)-system where partial dissociation was observed already at 90 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号