首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Miura  T. Sakai  R. Mogawa  J. J. Jonas 《哲学杂志》2013,93(27):4197-4209
Orientation-controlled copper bicrystals containing [001] symmetrical tilt boundaries aligned parallel to the loading axis were deformed in tension at 923?K and a strain rate of 4.2?×?10?4?s?1. The nucleation of dynamic recrystallization (DRX) was investigated along the grain boundary. For this purpose, both optical and orientation imaging microscopy methods were used. After grain-boundary migration (GBM) and bulging, nuclei appeared behind the most deeply indented grain boundary regions. The critical strain for nucleation was about one-quarter to one-half of the peak strain and depended on the misorientation angle. All the nuclei were twin-related (Σ3) to the matrices. Furthermore, all the primary twin traces were parallel to those of the inactive slip planes of the parent single crystals. Crystallographic analysis revealed the important role of the direction of GBM on twinning-plane variant selection. The characteristics of grain boundary nucleation depended sensitively on grain boundary character and on grain boundary mobility. The observed DRX nucleation mechanism is discussed in relation to the occurrence of GBM and twinning.  相似文献   

2.
Al single crystals oriented for single slip were cyclically deformed under constant plastic strain amplitudes between 1?×?10?3 and 5?×?10?2 at 77?K. Al single crystals showed hardening to saturation at all applied shear stress amplitudes. The resultant cyclic stress–strain curve (CSSC) showed a stress plateau in a range of plastic strain amplitude from 2?×?10?3 to 2?×?10?2. Surface observation revealed that multiple slip systems were active even at the strain amplitude in the plateau region. At plastic strain amplitudes corresponding to the plateau of the CSSC, persistent slip bands (PSBs) were formed parallel to the primary slip plane. In the PSBs, well-developed dislocation walls parallel to the {100} planes were observed. The microstructure in the PSBs was explained by the fact of multiple activation of the primary and critical slip systems. The above results indicate that the high stacking fault energy of Al is an important factor affecting the fatigue behaviour even at 77?K.  相似文献   

3.

Ni-44 at.% Al and Ni-50 at.% Al single crystals were tested in compression in the hard d001 ¢orientation. The dislocation processes and deformation behaviour were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from a?111? slip to non-a?111? slip at intermediate temperatures. In Ni-50 at.% Al single crystals, only a?010? dislocations are observed above the slip transition temperature. In contrast, a a?101?{101} glide has been observed to control deformation beyond the slip transition temperature in Ni-44 at.% Al. a?101? dislocations are observed primarily along both ?111? directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the a?101? dislocations along these directions is decomposed into two a?010? dislocations, separated by a distance of approximately 2 nm. The temperature window of stability for these a?101? dislocations depends upon the strain rate. At a strain rate of 1.4 210?4 s?1, a?101? dislocations are observed between 800 and 1000 K. Complete decomposition of a?101? dislocations into a?010? dislocations occurs beyond 1000 K, leading to a?010? climb as the deformation mode at higher temperatures. At lower strain rates, decomposition of a?101? dislocations has been observed to occur along the edge orientation at temperatures below 1000 K. Embedded-atom method calculations and experimental results indicate that a?101? dislocations have a large Peierls stress at low temperatures. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for a?101?{101} glide in Ni-44 at.% Al, and for the observed yield strength versus temperature behaviour of Ni-Al alloys at intermediate and high temperatures.  相似文献   

4.
5.
A natural mixture of heavy rare-earth oxides extracted from xenotime mineral have been used to prepare large single crystals of the high-temperature REBa2Cu3O7??? superconductor, grown using the CuO?CBaO self-flux method. Its mechanical properties along the ab-plane were characterized using instrumented indentation. Hardness and elastic moduli were measured by the Oliver and Pharr method, which yielded 7.4?±?0.2?GPa and the range 135?C175?GPa at small depths, respectively. Increased loads promote the nucleation of lateral cracks, which reduce hardness and measured elastic modulus, as indicated by instrumented indentation at higher loads. The indentation fracture toughness, estimated by measuring the radial crack length from cube corner indentations at various loads, was found to be 0.8?±?0.2?MPa m1/2. The observed slip systems of REBa2Cu3O7??? single crystals were [100](001) and [010](001), the same as for YBa2Cu3O7??? single crystals. The initial stages of deformation and fracture in the indentation process were investigated. The hardness and elastic modulus are not strongly modified by the crystallographic orientation in the ab-plane. This was interpreted in terms of resolved shear stresses in the active slip systems. Evidence of cracking along the {100} and {110} planes on the ab-plane was observed. In conclusion, the mechanical properties of REBa2Cu3O7??? single crystals prepared from xenotime are equivalent to those of YBa2Cu3O7??? single crystals from conventional rare-earth oxides.  相似文献   

6.
Dynamic deformation of copper single crystals, especially of fatigued copper single crystals with different orientations, was conducted on a split-Hopkinson pressure bar apparatus. The strain rates were in the range 2???9?×?103?s?1. After dynamic deformation, the adiabatic shear bands (ASBs) were examined in a light microscope and SEM. The width and spacing of ASBs formed under different strain rates in a fatigued copper single crystal were measured and the spacing of ASBs is one-order of magnitude smaller than the theoretical predictions. The possible reasons for the discrepancy were discussed. The critical strains for the ASB formation in four different orientated single crystals at stain rate of about 4?×?103?s?1 were determined by examining the post-deformation specimens and dynamic stress–strain curves. It is clearly indicated that the critical strains for the ASB formation are orientation-dependent in copper single crystals. A simple microscopic mechanism for ASB formation in fatigued single crystals was proposed.  相似文献   

7.
The behaviour of an as-cast ABaX422 Mg alloy has been evaluated with regard to its compressive strength in the temperature range 25–250?°C and hot working characteristics in the range 260–500?°C. The microstructure of the as-cast alloy has intermetallic phases Mg17Ba2 and (Al, Mg)2Ca at the grain boundaries and is fine grained. The alloy has compressive strength better than AZ31 with Ca and Zn, which was attributed to the finer grain size. A processing map developed to characterize its hot working behaviour revealed two dynamic recrystallization domains in the temperature and strain rate ranges of (1) 300–390?°C/0.0003–0.001?s?1 and (2) 400–500?°C/0.0003–0.5?s?1. In the first domain, basal?+?prismatic slip occurs along with recovery by climb while in the second domain, second-order pyramidal slip dominates and recovery occurs by cross-slip. The apparent activation energy estimated in Domains 1 and 2 are 169 and 263?kJ/mol respectively, both being higher than that for self-diffusion suggesting that the intermetallic particles in the matrix cause considerable back stress. Bulk metal working of this alloy may be done in Domain 2 which ensures high workability while finish working may be done in Domain 1 in order to achieve a fine grained component. The alloy exhibits flow instability regimes at higher strain rates, in both the lower and higher temperature regions of the processing map, the manifestation being adiabatic shear band formation and flow localization respectively.  相似文献   

8.
Work-hardening curves of single crystals of iron and its alloys with 0·5 and 0·9 wt.% Si and paths of the tensile axis of specimens during deformation were investigated. Single crystals oriented for single glide were deformed in tension at temperatures 113, 201, 295 and 403 K at a nominal strain rate of 5·5×10?5 sec?1. It appears that with increasing silicon content (a) the transition between the high-temperature regime of plastic deformation (characterized by three-stage work-hardening) and the low-temperature regime is shifted to lower temperatures, (b) stage I-hardening is enhanced and (c) the flow stress level increases. These observations are explained by strong solution hardening of iron by silicon atoms which suppresses the differences between mobilities of screw and non-screw dislocations, increases the flow stress level and consequently the density of primary dislocations. As a result of this the latent hardening in the secondary slip system increases and stage I extends to a large strain.  相似文献   

9.
10.
This paper studies the effect of electrolytic hydrogen charging on the plastic deformation and fracture of Hadfield steel single crystals oriented for tension along the ?111? and ?144? directions, which the major deformation mechanism is mechanical twinning. Electrolytic hydrogen charging for five hours at a current density of 100 A/m2 slightly affects the stages of plastic flow, deformation mechanism, and the value of uniform elongation of ?111? and ?144? single clreystals. Hydrogen saturation causes shear microlocalization and a decrease of the strain hardening coefficient in twinning in one system, but slightly affects the strain hardening characteristics in multiple twinning. Hydrogen charging increases the fraction of the brittle component on fracture surfaces and leads to microand macrocracking near the fracture zone on the lateral surface of deformed specimens. It has been found experimentally that the stress relaxation rate in loaded ?111? single clreystals after hydrogen saturation decreases. Mechanisms of describing this phenomenon have been proposed.  相似文献   

11.
The creep in Ni3Ge alloy single crystals with strain axis orientations of [001], [$ \bar 1 $ \bar 1 39], [$ \bar 2 $ \bar 2 34], and [$ \bar 1 $ \bar 1 22] was investigated. It was found that changes in strain axis orientation that lead to cubic slip increase the creep resistance of Ni3Ge alloy single crystals.  相似文献   

12.
Tensometric study of n-type Bi2Se3 single crystals in dc magnetic fields to 6 T in a temperature range of 7–23 K detected a weak negative thermal expansion (NTE) in the basal plane. The NTE increases with the field strength and depends on its orientation with respect to the trigonal c axis. In a magnetic field of 6 T, parallel to the c axis, the linear NTE coefficient reaches ?7 · 10?7 K?1, and a minimum sample length is reached at a temperature of 13 K, where a Hall carrier concentration maximum is also detected. The found magnetoelastic anomaly can be associated with the topological insulator state.  相似文献   

13.
Abstract

The austenite microstructure evolution and softening processes have been studied in a 23Cr–6Ni–3Mo duplex stainless steel, comprising equal fractions of austenite and ferrite, deformed in uniaxial compression at 1000 °C using strain rates of 0.1 and 10 s?1. The texture and microstructure evolution within austenite was similar in character for both the strain rate used. The observed large-scale subdivision of austenite grains/islands into complex-shaped deformation bands, typically separated by relatively wide transition regions, has been attributed to the complex strain fields within this phase. Organised, self-screening microband arrays were locally present within austenite and displayed a crystallographic character for a wide range of austenite orientations. The microband boundaries were aligned with the traces of {1?1?1} slip planes containing slip systems having high, although not necessarily the highest possible, Schmid factors. The slightly lower mean intercept length and higher mean misorientation obtained for the sub-boundaries at the higher strain rate can be ascribed to the expected more restricted dynamic recovery processes compared to the low strain rate case. Dynamic recrystallisation within austenite was extremely limited and mainly occurred via the strain-induced migration of the distorted original twin boundaries, followed by the formation of multiple twinning chains.  相似文献   

14.
ABSTRACT

The thermal compression behaviour of Al–Zn–Mg alloy was studied on a thermal simulator machine at the temperature range of 380–540°C and strain rate range of 0.01–10?s?1. The constitutive equation and 3D processing map of the alloys were established. The microstructure characteristics of the alloy were studied by metallographic observation, electron back-scatter diffraction (EBSD) analysis and transmission electron microscopy (TEM) microstructure analysis. The results show that the peak stress of high-temperature deformation of alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The dynamic recovery of the alloy occurs at the temperature range of 380–460°C and the strain rate range of 0.01–0.1?s?1. The dynamic recrystallization of the alloy occurs at the temperature range of 460–500°C and the strain rate range of 0.01–0.1?s?1. The alloy maintains fine and uniform recrystallized grains at a temperature range of 460–480°C and a strain rate range of 0.01–0.1?s?1, which is suitable for hot working.  相似文献   

15.
Samples of Ti–6?wt%?Al–4?wt%?V and Timet 550 (Ti–4?wt%?Al–4?wt%?Mo–2?wt%?Sn–0.5?wt%?Si) have been subjected to strain rates between 10?1 and 103?s?1and detailed examination of the dislocation structure in the α grains has been carried out using transmission electron microscopy (TEM). For samples deformed to a strain of 0.1 at 10?1?s?1, detailed analysis of the defects can be carried out using all diffracting vectors and the presence of (c +?a) dislocations and a dislocations thus confirmed. In contrast, for samples strained to the same strain of 0.1 but at 5?s?1, it is not possible to obtain images of dislocations when using any diffracting vectors other than 0002. Thus the presence of dislocations which have a Burgers vector containing a c component can be confirmed in the samples strained at 5?s?1 but the presence of a-component dislocations can only be inferred from TEM of these samples because of the difficulty of obtaining images with diffracting vectors other than 0002. Limited observations on samples strained at 103?s?1 show that similar difficulties are found in imaging dislocations as are found in samples deformed at 5?s?1 but at this strain rate, the highest used, the difficulties are reduced since images can be obtained in some grains using diffracting vectors other than 0002. These results are discussed in terms of the nature of damage as a function of strain rate and the factors that influence contrast from dislocations in crystals.  相似文献   

16.
ABSTRACT

The use of nanopolycrystalline diamond has allowed a systematic study on deformation of polycrystalline diamond composites (PCDCs). Bulk PCDCs samples containing either Co or SiC as a binding agent were deformed under high pressure and temperature to strains up to 18% at strain rates ~10?5?s?1. All samples exhibit strong work hardening. The strength of PCDCs depends on the amount and type of binding agents and is consistently weaker than that of diamond single crystals. The weakening may be due to the binder materials, which play an important role in affecting grain boundary structures. In SiC-based PCDC, significant grain fragmentation occurs. Nearly all grain boundaries are wetted by SiC after large deformation, resulting in lower strength. In Co-based PCDC, the microstructure is dominated by dislocations, deformation twins, and separated grain boundaries. The density of deformation twins increases significantly with strain, with the twin domain width reaching as low as 10–20?nm at 14% strain.  相似文献   

17.
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001?s?1 to 600?s?1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10?mm, width 4?mm and thickness 2?mm (DP1200) and 1.25?mm (DP1400), are tested at room temperature (20°C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001?s?1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3?s?1, and 18?s?1) and high strain rates (200?s?1, 400?s?1, and 600?s?1) respectively. Tests under quasi-static condition are performed at high temperature (200°C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.  相似文献   

18.
Raman spectra of single crystals of RbAl and RbMg-priderites, which are known to be one-dimensional ionic conductors, have been measured and analyzed. In addition to the spectra due mainly to the vibrations of Ti(Al)-O or Ti(Mg)-O frameworks observed in the frequency region above 100 cm?1, the Raman bands, which can be assigned to the vibration modes of Rb+ ions, have been observed in the frequency region below 100 cm?1. Raman spectra of the solid solutions (Rb, K)-Al priderites have also been studied.  相似文献   

19.
The influence of the LT-AlN(NL) growth times on the mosaic structure parameters of the AlN layer grown on the LT-AlN(NL)/6H-SiC structures as well as the dislocation densities and the strain behaviours in the AlN epilayers has been investigated using XRD measurements. The growth times of the LT-AlN(NL) were changed to 0, 60, 120, 180, and 240?s. We observed that the mosaic structure parameters of the AlN epilayers were slightly affected by the LT-AlN(NL) growth times. However, the dislocation densities in the AlN layer are affected by the growth times of the LT-AlN(NL) layer. The highest edge dislocation density (5.48?×?1010?±?2.3?×?109?cm?2) was measured for the sample in which 120?s grown LT-AlN(NL) was used. On the other hand, highest screw type dislocation density (1.21?×?1010?±?1.7?×?109?cm?2) measured in the sample E that contains 240?s growth LT-AlN(NL). The strain calculation results show that the samples without LT-AlN(NL) suffered maximum compressive in-plane strain (?10.9?×?10?3?±?1.8?×?10?4), which can be suppressed by increasing the LT-AlN(NL) growth times. The out-of-plane strain also has a compressive character and its values increase with LT-AlN(NL) growth times between 60 and 180?s. Same out-of-plane strain values were measured for the LT-AlN(NL) growth times of 180 and 240?s. Furthermore, the form of the biaxial stress in the AlN epilayer changed from compressive to tensile when the LT-AlN(NL) growth times were greater than 120?s.  相似文献   

20.
王静  朱震刚  刘国东 《物理学报》1996,45(11):1782-1787
研究了[110]和[100]取向高纯铝单晶在6×10-4拉压疲劳应变振幅条件下的应力σm和内耗Q-1的变化,对不同阶段的位错组态作了详细的透射电子显微镜观察,并利用滑移几何的观点予以解释 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号