首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To make progress toward ambitious and equitable goals for students’ mathematical development, teachers need opportunities to develop specialized ways of knowing mathematics such as mathematical knowledge for teaching (MKT) for their work with students in the classroom. Professional learning communities (PLCs) are a common model used to support focused teacher collaboration and, in turn, foster teacher development, instructional improvement, and student outcomes. However, there is a lack of specificity in what is known about teachers’ work in PLCs and what teachers can gain from those experiences, despite broad claims of their benefit. We discuss an investigation of the work of secondary mathematics teachers in PLCs at two high schools to describe and explicate possible opportunities for teachers to develop the mathematical knowledge needed for the work of teaching and the ways in which these opportunities may be pursued or hindered. The findings show that, without pointed focus on mathematical content, opportunities to develop MKT can be rare, even among mathematics teachers. Two detailed images of teacher discussion are shared to highlight these claims. This article contributes to the ongoing discussion about the affordances and limitations of PLCs for mathematics teachers, considerations for their use, and how they can be supported.  相似文献   

2.
Research suggests the importance of mathematics knowledge for teaching (MKT) for enabling elementary school teachers to effectively teach mathematics. MKT involves both mathematical content knowledge (M‐CK) and mathematical pedagogical content knowledge (M‐PCK). However, there is no consensus on how best to prepare elementary preservice teachers (PSTs) to achieve M‐CK and M‐PCK. This study builds on research related to MKT by investigating influences of mathematics content courses designed specifically for elementary PSTs (IMPACT courses—Impact of Mathematics Pedagogy and Content on Teaching) on their attitudes (i.e., confidence and motivation) toward M‐CK and M‐PCK. Results suggest that the PSTs who participated in these IMPACT courses not only acquired high levels of confidence and motivation toward M‐CK, but also showed significant and greater gains in attitudes toward M‐PCK, after taking the required mathematics methods course, than their counterparts. Further, the findings suggest that these IMPACT courses provided a mathematical foundation that allowed the PSTs to engage in mathematics teaching methods better than those PSTs who did not have such a foundation. These results suggest potential course experiences that may enhance M‐CK and M‐PCK for elementary PSTs.  相似文献   

3.
We report on one aspect of an extended research and development project that was conducted to support teachers?? development of mathematical knowledge for teaching (MKT) algebra through participation and authentic engagement in online collaborative mathematical problem solving. This article expands on our recent work, which has succeeded in developing a model for supporting teachers?? mathematical development at a distance that has shown great promise for supporting significant gains in teachers?? MKT. Specifically, this ex-post-facto analysis consisted of qualitative, micro-level analysis of the content of teachers?? activity and generated artifacts and helps us understand how the various collaborative activities (specific combinations of interaction, instructor support and feedback, and technology) supported and/or constrained the development of MKT algebra in an online environment.  相似文献   

4.
Dicky Ng 《ZDM》2012,44(3):401-413
The purpose of this study was to examine the adaptability of the US-based mathematical knowledge for teaching (MKT) geometry measures for use to study Indonesian elementary teachers’ MKT geometry. We selected the geometry scales Form A and Form B, and then adapted the items using a framework developed by Delaney et al. (J Math Teach Educ 11(3):171–197, 2008). We administrated the adapted learning mathematics for teaching measures to 210 elementary and middle school teachers. During translation and adaptation of the measures, issues arose regarding the mathematical substance of the items related to the use of inclusive and exclusive definitions of shapes. Psychometric analyses confirmed that these items were more difficult for the Indonesian elementary teachers compared to the US sample. Implications for future direction for item adaptation to measure Indonesia teachers’ MKT are presented.  相似文献   

5.
Seán Delaney 《ZDM》2012,44(3):427-441
Researchers who study mathematical knowledge for teaching (MKT) are interested in how teachers deploy their mathematical knowledge in the classroom to enhance instruction and student learning. However, little data exists on how teachers’ scores on the US-developed measures relate to classroom instruction in other countries. This article documents a validation study of Irish teachers’ scores on measures of MKT that were adapted for use in Ireland. A validity argument is made identifying elemental, structural and ecological assumptions. The argument is evaluated using qualitative and quantitative data to analyse inferences related to the three assumptions. The data confirmed the elemental assumption but confirming the structural and ecological assumptions was more difficult. Only a weak association was found between teachers’ MKT scores and the mathematical quality of instruction. Possible reasons for this are outlined and challenges in validating the use of measures are identified.  相似文献   

6.
In this paper, qualitative results of a case study about the professional knowledge in the area of argumentation and proof of future teachers from universities in three countries are described. Based on results of open questionnaires, data about the competencies these future teachers have in the areas of mathematical knowledge and knowledge of mathematics pedagogy are presented. The study shows that the majority of the future teachers at the participating universities situated in Germany, Hong Kong and Australia, were not able to execute formal proofs, requiring only lower secondary mathematical content, in an adequate and mathematically correct way. In contrast, in all samples there was evidence of at least average competencies of pedagogical content reflection about formal and pre-formal proving in mathematics teaching. However, it appears that possessing a mathematical background as mandated for teaching and having a high affinity with proving in mathematics teaching at the lower secondary level are not a sufficient preparation for teaching proof.  相似文献   

7.
This study examined how two selected expert teachers improved their expertise in mathematics instruction through participating in the development of exemplary lessons throughout the years. The main data for this study included the lesson designs at two crucial stages (with relevant video-taped lessons), teachers?? reflection reports, written surveys, and a phone interview. These two case studies showed that the teachers continuously developed their proficiency in the following four aspects: obtaining a better understanding of content knowledge; becoming more skillful in addressing difficult content points; having a more purposeful organization of problem sequences; and developing more comprehensive and feasible instructional objectives. Both teachers appreciated the learning experience from outside experts?? critical feedback, collaborative teaching experiments, self-reflection on teaching, and helping other teachers. They also realized a tension between exemplary lesson development and the reality of examination-driven teaching.  相似文献   

8.
Reforms in mathematics education call for K‐12 teachers to employ standards‐based pedagogies, which embody the National Council for Teachers of Mathematics' principles and standards. In order to effectively support teachers' implementation of standards‐based curricula, professional development must be provided that meets teachers' needs. The professional development program in this study focused on the implementation of a standards‐based mathematics curriculum entitled Investigations in Number, Data, and Space (Investigations). This study uses Guskey's framework as a guide to examining teachers' perceptions of the impact of the professional development that they received; their perceptions of mathematics teaching and learning; and how elements of the professional development translated into practice. Twenty‐two participants were randomly selected from the 53 professional development participants to be interviewed and observed during their mathematics teaching. Using a constant comparison method, the data sources in this study highlighted themes surrounding teachers' experiences with professional development and the implementation of the curricula. The analysis of the data sources in this study highlighted themes surrounding teachers' experiences with professional development: teachers as learners, teachers as self‐evaluators, shifting paradigms, enactment of professional development content into practice, and the influence of the state standardized mathematics test. The results of this study have several implications for future professional development and also highlight some of the more general issues that teachers face when attempting to enact new knowledge and skills into their practice.  相似文献   

9.
Raimo Kaasila 《ZDM》2007,39(3):205-213
This article presents narrative inquiry as a method for research in mathematics education, in particular the study of how pre-service teachers’ views of mathematics develop during elementary teacher education. I describe two different, complementary approaches to applying narrative analysis, one focusing on the content of a narrative, the other focusing on the form. The examples discussed are taken from interviews with and teaching portfolios compiled by four pre-service teachers. In analysing the content of the students’ narratives, I use emplotment to construct a retrospective explanation of how one pre-service teacher’s own experiences at school were reflected in the development of her mathematical identity. In analysing the form of the narratives, I also look at how the students told their stories, using linguistic features, for example, to identify core events in the accounts. This particular focus seems to be promising in locating turning points in the trainees’ views of mathematics.  相似文献   

10.
This study examined trainee teachers' mathematical knowledge in teaching (MKiT) over their final year in a US Initial Teacher Education (ITE) programme. This paper reports on an exploratory methodological approach taken to use the Knowledge Quartet to quantify MKiT through the development of a new protocol to code trainees' teaching of mathematics lessons. This approach extends Rowland's et al. work on the Knowledge Quartet (KQ). Justification for using the KQ to quantify MKiT, and the potential benefits such an attempt might provide those involved with ITE, are discussed. It is suggested that quantified MKiT data based on the Knowledge Quartet can be used to consider MKiT development in novice teachers in order to inform ITE programmes and form new theoretical loops between theory and practice in teacher education.  相似文献   

11.
Yeping Li  Rongjin Huang 《ZDM》2008,40(5):845-859
In this study, we investigated the extent of knowledge in mathematics and pedagogy that Chinese practicing elementary mathematics teachers have and what changes teaching experience may bring to their knowledge. With a sample of 18 mathematics teachers from two elementary schools, we focused on both practicing teachers’ beliefs and perceptions about their own knowledge in mathematics and pedagogy and the extent of their knowledge on the topic of fraction division. The results revealed a gap between these teachers’ limited knowledge about the curriculum they teach and their solid mathematics knowledge for teaching, as an example, fraction division. Moreover, senior teachers used more diverse strategies that are concrete in nature than junior teachers in providing procedural justifications. The results suggested that Chinese practicing teachers benefit from teaching and in-service professional development for the improvement of their mathematics knowledge for teaching but not their knowledge about mathematics curriculum.  相似文献   

12.
Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers’ opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were ‘difficult’ because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers’ lack of knowledge in terms of teaching mathematics.  相似文献   

13.
In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic operations with rational numbers. In order to evaluate the potential applicability of the framework to task design, it was used for the design of mathematical learning tasks for teachers. The article includes examples of the tasks, their theoretical analysis, and empirical evidence of the sensitivity of the tasks to variations in teachers’ knowledge of the subject. This evidence is based on a study of 46 primary school teachers. The article concludes with remarks on the applicability of the framework to research and practice, highlighting its potential to encourage teaching the four algorithms with an emphasis on conceptual understanding.  相似文献   

14.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

15.
This paper examines professional development workshops focused on Connected Math, a particular curriculum utilized or being considered by the middle‐school mathematics teachers involved in the study. The hope was that as teachers better understood the curriculum used in their classrooms, i.e., Connected Math, they would simultaneously deepen their own understanding of the corresponding mathematics content. By focusing on the curriculum materials and the student thought process, teachers would be better able to recognize and examine common student misunderstandings of mathematical content and develop pedagogically sound practices, thus improving their own pedagogical content knowledge. Pre‐ and post‐mathematics content knowledge assessments indicated that engaging middle‐school teachers in the curriculum materials using pedagogy that can be used with their middle‐school students not only solidified teachers' familiarity with such strategies, but also contributed to their understanding of the mathematics content.  相似文献   

16.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

17.
As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study examines the criteria prospective and current secondary mathematics teachers use and value most when evaluating mathematical cognitive technologies (MCTs). Results indicate all groups of participants developed criteria focused on how well an MCT represents the mathematics, student interaction and engagement with the MCT, and whether the MCT was user-friendly. However, none of their criteria focused on how well an MCT would reflect students’ solution strategies or illuminate their thinking. In addition, there were some differences between the criteria created by participants with and without teaching experience, specifically the types of supports available in an MCT. Implications for mathematics teacher educators are discussed.  相似文献   

18.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

19.
This paper reports on one aspect of a larger research project conducted in the United States that designed and implemented an elementary mathematics, specialist-coach preparation program and evaluated the effect of qualified specialist-coaches on student achievement. The paper discusses a conceptual framework for coaching in which a specialist-coach is to serve as a “more knowledgeable other” for a community of practice in a school, and ultimately to impact both the knowledge and professional practice of teachers and the school’s mathematics program as a whole. Specialist-coaches have unique opportunities and challenges in this daunting task, and the paper discusses one program designed to prepare well-respected teachers for the transition to the role and responsibilities of a specialist-coach. The reported analyses document changes in specialist-coaches’ mathematical content knowledge, mathematical knowledge for teaching, and beliefs regarding mathematics teaching and learning over the preparation program and during the specialist-coaches’ first years of service in a school. These specialist-coaches’ mathematical content knowledge grew and their beliefs became more aligned with a Making Sense perspective during the preparation program, and their changed state persisted throughout 2–3 years of service as specialist-coaches. Evidence addressing the specialist-coaches’ mathematical knowledge for teaching was mixed, but suggested that growth occurred both during the preparation program and in their first year of coaching, stabilizing in the years following.  相似文献   

20.
This paper addresses a topic within university mathematics education which has been somewhat underexplored: the teaching practices actually used by university mathematics teachers when giving lectures. The study investigates the teaching practices of seven Swedish university teachers on the topic of functions using a discursive approach, the commognitive framework of Sfard. In the paper a categorization of the construction and substantiation routines used by the teachers is presented, for instance various routines for constructing definitions and examples, and for verifying whether an example satisfies a given definition. The findings show that although the overall form of the lectures is similar, with teachers using ‘chalk talk’, and overt student participation limited to asking and answering questions, there are in fact significant differences in the way the teachers present and do mathematics in their lectures. These differences present themselves both on the level of discursive routines and on a more general level in how the process of doing mathematics is made visible in the teachers’ teaching practices. Moreover, I believe that many of the results of the study could be relevant for investigating the teaching of other mathematical topics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号