首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aluminum oxide, a promising material for high temperature applications, is synthesized by combustion route and characterized by X-ray diffraction technique. Photoluminescence of aluminum oxide bombarded with 120 MeV swift Au9+ ions have been studied at room temperature. The observed PL emission with peak at ~420 nm is attributed to F-center while the two more weak emissions with peaks at ~482 and ~525 nm are attributed to aggregates of F-centers. It is found that PL intensity increases with increase in Au9+ ion fluence up to ~1×1013 ions cm?2 and thereafter it reaches saturation. The Fourier transform Infrared spectroscopy results show the destruction of Al?O?H bonds whereas the XRD results indicate the surface amorphization of Al2O3.  相似文献   

2.
Ionoluminescence (IL) of kyanite single crystals bombarded with 100 MeV swift Ag8+ ions with fluences in the range 1.87-7.5×1011 ions/cm2 has been studied. A pair of sharp IL peaks at ∼689 and 706 nm along with broad emission in the region 710-800 nm are recorded in both crystalline and pelletized samples. Similar results are recorded in Photoluminescence (PL) of pelletized kyanite bombarded with same ions and energy with fluences in the range 1×1011-5×1013 ions/cm2 with an excitation of 442 nm laser beam. The characteristic pair of sharp emission peaks at 689 and 706 nm in both IL and PL is attributed to luminescence centers activated by Fe2+ and Fe3+ ions. The reduction in IL and PL bands intensity with increase of ion fluence might be attributed to degradation of Si-O (2ν3) bonds, present on the surface of the sample.  相似文献   

3.
Ionoluminescence (IL) of nano crystalline Mg2SiO4:Dy3+ pellet samples bombarded with 100 MeV Si+8 ions with fluences in the range (1.124–22.480) × 1012 ions cm−2 have been studied. Two prominent IL bands with peaks at ∼480 nm and ∼580 nm and a weak band with peak at ∼670 nm are recorded. The characteristic peaks are attributed to luminescence center activated by Dy3+ ions due to the transitions 4F9/26H15/2,6H13/2 and 6H11/2. It is found that IL intensity initially decreases rapidly and then continuous to decrease slowly with further increase in ion fluence. The reduction in the Ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O ( 2ν3) bonds present on the surface of the sample and/or due to lattice disorder produced by dense electronic excitation under heavy ion irradiation.  相似文献   

4.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

5.
Pellets of nanocrystalline aluminum oxide synthesized by a combustion technique are irradiated with 120 MeV Au9+ ions for fluence in the range 5×1011-1×1013 ions cm−2. Two photoluminescence (PL) emissions, a prominent one with peak at ∼525 nm and a shoulder at ∼465 nm are observed in heat treated and Au9+ ion irradiated aluminum oxide. The 525 nm emission is attributed to F22+-centers. The PL intensity at 525 nm is found to increase with increase in ion fluence up to 1×1012 ions cm−2 and decreases beyond this fluence. Thermoluminescence (TL) of heat-treated and swift heavy ion (SHI) irradiated aluminum oxide gives a strong and broad TL glow with peak at ∼610 K along with a weak shoulder at 500 K. The TL intensity is found to increase with Au9+ ion fluence up to 1×1013 ions cm−2 and decreases beyond this fluence.  相似文献   

6.
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol–gel method was investigated. These BFO samples were implanted by 15.8?MeV ions of Au5+ at various ion fluence ranging from 1?×?1014 to 5?×?1015?ions/cm2. Effect of Au5+ ions’ implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds’ formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8?MeV Au5+ ions at a fluence of 5?×?1015?ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8?MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.  相似文献   

7.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

8.
Nanocrystalline TiO2 structures are formed by irradiation of 100 MeV Au8+ ion beam on amorphous thin films of TiO2. Surface morphology of the nanocrystals is studied by Atomic Force Microscopy (AFM). Amorphous to nanocrystalline phase transformation is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopic studies. Optical characterization is carried out by UV-VIS spectroscopy technique. Blue shift observed in absorption band edge indicates the formation of nanophase TiO2 after irradiation. The impinging swift heavy ion (100 MeV Au8+) induces nucleation of nanoparticles along the ion trajectory through inelastic collisions of the projectile with electrons of the material. It is observed that the shape and size of nanoparticles formed is dependant on the irradiation fluence.  相似文献   

9.
Ultraviolet and visible spectroscopic measurements were used to investigate prepared undoped and Mn-doped sodium phosphate glasses before and after successive gamma irradiation. The effects of both glass composition and MnO2 content on the generation of radiation-induced defects were investigated. Undoped sodium phosphate glass shows strong UV absorption, which is attributed to the presence of trace iron impurities present in the raw materials. Mn-doped glasses reveal an additional visible broad band centered at about 500 nm due to Mn3+, which has recently been related to the 5Eg5T2g transition. The radiation-induced bands are correlated with the generation of liberated electron–hole pairs during the process of gamma irradiation and the possibility of photochemical reactions especially with trace iron impurities and manganese ions. The intensity and the position of the induced bands are observed to depend on the type and composition of glass, concentration of the dopant and also on the irradiation dose. Manganese ions when present in relatively higher content have been found to show a shielding behavior towards the effects of progressive gamma irradiation causing a retardation of the growth of the induced defects. Infrared and Raman spectra of the undoped and Mn-doped glasses were measured to investigate the structural phosphate groups present and the effect of MnO2 on the network structure. An ESR investigation was carried out to confirm the state of manganese ions in the prepared sodium phosphate glasses.  相似文献   

10.
Nanoparticles of Y2O3:Dy3+ were prepared by the solution combustion method. The X-ray diffraction pattern of the 900°C annealed sample shows a cubic structure and the average crystallite size was found to be 31.49?nm. The field emission scanning electron microscopy image of the 900°C annealed sample shows well-separated spherical shape particles and the average particle size is found to be in a range 40?nm. Pellets of Y2O3:Dy3+ were irradiated with 100?MeV swift Si8+ ions for the fluence range of 3?×?1011_3?×?1013 ions cm?2. Pristine Y2O3:Dy3+ shows seven Raman modes with peaks at 129, 160, 330, 376, 434, 467 and 590?cm?1. The intensity of these modes decreases with an increase in ion fluence. A well-resolved thermoluminescence glow with peaks at ~414?K (Tm1) and ~614?K (Tm2) were observed in Si8+ ion-irradiated samples. It is found that glow peak intensity at 414?K increases with an increase in the dopant concentration up to 0.6?mol% and then decreases with an increase in dopant concentration. The high-temperature glow peak (614?K) intensity linearly increases with an increase in ion fluence. The broad TL glow curves were deconvoluted using the glow curve deconvoluted method and kinetic parameters were calculated using the general order kinetic equation.  相似文献   

11.
The initial stages of the interaction of oxygen with a Cr(110) surface have been investigated at 300 K by LEED, AES, electron energy loss spectroscopy (ELS), secondary electron emission spectroscopy (SES) and work-function change measurement (Δφ). In the exposure region up to 2 L, the clean-surface ELS peaks due to interband transition weakened and then disappeared, while the ~5.8 and 10 eV loss peaks attributed to the O 2p → Cr 3d transitions appeared, accompanied with a work-function increase (Δφ = +0.19 eV at2L). In the region 2–6 L the work function decreased to below the original clean-surface value (Δφmin = ?0.24 eV at6L), and five additional ELS peaks were observed at ~2, 4, 11, 20 and 32 eV: the 2 and 4 eV peaks are ascribed to the ligand-field d → d transitions of a Cr3+ ion, the 11 eV peak to the O 2p → Cr 4s transition, the 20 eV peak to the Cr 3d → 4p transition of a Cr3+ ion and the 32 eV peak probably to the Cr 3d → 4f transition. A new SES peak at 6.1 eV, being attributed to the final state for t he 11 eV ELS peak, was observed at above 3 L and identified as due to the unfilled Cr 4s state caused by charge transfer from Cr to oxygen sites in this region. In the region 6–15 L the work function increased again (Δφmax = +0.32 eV at15 L), the 33 and 46 eV Auger peaks due to respectively the M2,3(Cr)L2,3(O)L2,3(O) cross transition and the M2,3VV transition of the oxide appeared and the 26 eV ELS peak due to the O 2s → Cr 4s transition was also observed. Above 10 L, the ELS spectra were found to be practically the same as that of Cr2O3. Finally, above 15 L, the work function decreased slowly (Δφ = +0.13 eV at40L). From these results, the oxygen interaction with a Cr(110) surface can be classified into four different stages: (1) dissociative chemisorption stage up to 2 L, (2) incorporation of O adatoms into the Cr selvedge between 2–6 L, (3) rapid oxidation between 6–15 L leading to the formation of thin Cr2O3 film, and (4) slow thickening of Cr2O3 above 15 L. The change in the Cr 3p excitation spectrum during oxidation was also investigated. The oxide growth can be interpreted on the basis of a modified coupled current approach of low-temperature oxidation of metals.  相似文献   

12.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.  相似文献   

13.
ABSTRACT

According to the spectra of stationary X-ray excited luminescence (XEL) of BaF2: Eu nanophosphors at 80 and 294 K, it was revealed that the thermal annealing of fine-grained nanoparticles (d?=?35?nm) in the range of 400–1000°C, which is accompanied by an increase of their sizes in the range of 58–120?nm, does not result in effective changes of the charge state of Eu3 + → Eu2 + activator, in contrast to CaF2: Eu nanoparticles. The maximum light output of X-ray excited luminescence of BaF2: Eu nanophosphors in the 590?nm emission band of Eu3+ ion was observed at an annealing temperature of 600°C with the average size of nanoparticles 67?nm. The subsequent growth of annealing temperatures, especially in the range of 800–1000°C, causes decrease in the light output of X-ray excited luminescence due to the increase of defect concentration in the lattice as a result of sharp increase of nanoparticle sizes and their agglomeration. In BaF2: Eu nanoparticles of 58?nm size, according to the thermostimulated luminescence (TSL) spectrum, transformation of Eu3+ → Eu2+ under the influence of long-time X-ray irradiation was revealed for the peak of 151?K. Thus, X-ray excited luminescence spectra of BaF2: Eu nanophosphors are formed predominantly due to the emission of Eu3+ ions, while emission of Eu2+ ions is observed in the TSL spectra.  相似文献   

14.
SCF-Xα SW MO calculations on metal core ion hole states and X-ray emission (XES) and X-ray photoelectron (XPS) transition states of the non- transition metal oxidic clusters MgO610?, AlO45? and SiO44? show relative valence orbital energies to be virtually unaffected by the creation of valence orbital or metal core orbital holes. Accordingly, valence orbital energies derived from XPS and XES are directly comparable and may be correlated to generate empirical MO diagrams. In addition, charge relaxation about the metal core hole is small and valence orbital compositions are little changed in the core hole state. On the other hand, for the transition metal oxidic clusters FeO610?, CrO69? and TiO68? relative valence orbital energies are sharply changed by a metal core orbital or crystal field orbital hole, the energy lowering of an orbital increasing with its degree of metal character. Consequently O 2p nonbonding → M 3d-O 2p antibonding (crystal field) energies are reduced, while M 3d bonding → O 2p nonbonding and M 3d-O 2p antibonding → M 4s,p-O 2p antibonding (conduction band) energies increase. Charge relaxation about the core hole is virtually complete in the transition metal oxides and substantial changes are observed in the composition of those valence orbitals with appreciable M 3d character. This change in composition is greater for e g than for t2g orbitals and increases as the separation of the eg crystal field (CF) orbitals and the O 2p nonbonding orbital set decreases. Based on the hole state MO diagrams the higher energy XPS satellite in TiO2 (at about 13 eV) is assigned to a valence → conduction band transition. The UV PES satellites at 8.2 eV in Cr2O3 and 9.3 eV in FeO are tentatively assigned to similar transitions to conduction band orbitals, although the closeness in energy of the crystal field and O 2p nonbonding orbitals in the valence orbital hole state prevents a definite assignment on energy criteria alone. However the calculations do clearly show that charge transfer transitions of the eg bonding → eg crystal field orbital type would generally occur at lower energy than is consistent with observed satellite structure.A core electron hole has little effect upon relative orbital energies and is only slightly neutralized by valence electron redistribution for MgO and SiO2. For the transition metal oxides a core hole lowers the relative energies of M3d containing orbitals by large amounts, reducing O → M charge transfer and increasing M 3d crystal field → conduction band energies. Large and sometimes overcomplete neutralization of the core hole is observed, increasing from CrO69? to FeO610? to TiO68?. as the O → M charge transfer energy declines.High energy XPS satellites in TiO2 may be assigned to O 2p nonbonding → conduction band transitions while lower energy UV PES satellites in FeO and Cr2O3 arise from crystal field or O 2p nonbonding → conduction band excitations. Our “shake-up” assignment for FeO610?, CrO69? and TiO68? are less than definitive because no procedure has yet been developed to calculate “shake-up” intensities resulting from transitions of the type described. However the results do allow a critical evaluation of earlier qualitative predictions of core and valence hole effects. First, we find that the comparison of hole or valence state ionic systems with equilibrium distance systems of higher nuclear and/or cation charge (e.g. the comparison of the FeO610? Fe 2p core hole state to Co3O4) is dangerous. For example, larger MO distances in the ion states substantially reduce crystal field splittings. Second, core and CF orbital holes sharply reduce O → M charge transfer energies, giving 2eg → 3eg energy separations which are generally too small to match observed satellite energies. Third, highest occupied CF-conduction band energies are only about 4–5 eV in the ground states, but increase to about 7–11 eV in the core and valence hole states of the transition metal oxides studied. The energetic arguments presented thus support the idea of CF and/or O 2p nonbonding → conduction band excitations as assignments for “shake-up” satellites, at least in oxides of metals near the beginning of the transition series.  相似文献   

15.
《Current Applied Physics》2018,18(8):864-868
We investigated the effect of the gamma-ray irradiation on the emission property of the Eu ion doped YVO4. We clearly observed that on exposure to the gamma-ray, sharp emission peaks originating from the Eu3+ ions were suppressed dramatically. Instead, a broad emission feature near 470 nm, which was attributed to the Eu2+ ions, emerged. The quantitative analysis on the emission spectra suggest that the valence state of the Eu ions in our samples was changed from 3 + to 2 + by the gamma-ray irradiation. The conversion of the valence state of the Eu ions was closely related to the formation of the oxygen vacancies induced by the gamma-ray irradiation.  相似文献   

16.
a-SiNx:H thin films of different stoichiometry grown by PECVD were subjected to irradiation by 100 MeV Au8+ ions with various fluences to understand the effect of stoichiometry on properties of thin films upon irradiation. Ellipsometry and UV–Vis study suggest the variation in the refractive index of thin films with fluence. The evolution of Hydrogen due to irradiation is quantified with the help of ERDA. RBS was probed to study the change in thin films' composition upon irradiation, which further helps understand the change in thin films' optical properties. Quenching of photoluminescence in the films with all stoichiometries was also observed due to ion irradiation. X-TEM images show the formation of discontinuous ion tracks of radius 2.5 nm in the film closer to silicon nitride stoichiometry. However, Si rich film does not show the clear formation of tracks. Results are explained in the framework of the Thermal spike mechanism of ion-solid interaction.  相似文献   

17.
Undoped and TiO2-doped lead phosphate glasses were prepared. Ultraviolet (UV)–visible and Fourier transform-infrared (IR) absorption spectra of the prepared samples were measured before and after being subjected to doses of 30 and 60 kGy of gamma irradiation. The parent undoped lead phosphate glass reveals charge transfer UV absorption bands which are attributed to the presence of unavoidable iron impurities contaminated within the raw materials used for the preparation of the glasses and the sharing of divalent lead (Pb2+) ions. Experimental spectral data indicate that the doped titanium ions are involved in such glasses in two valences, namely the trivalent and tetravalent states. The predominant trivalent titanium (Ti3+) ions are characterized by its purple color and exhibiting two visible absorption bands at about 500–550 and 700–720 nm. The lesser tetravalent titanium (Ti4+) ions belong to the d0 configuration and generally exhibit only an UV absorption band. Spectral data show that gamma irradiation causes noticeable changes in the undoped and TiO2-doped samples in the UV range while the effects are limited in the visible range. The observed changes in the UV region are attributed to photochemical reactions while TiO2-doped samples show retardation or shielding toward continuous gamma irradiation together with the sharing of heavy Pb2+ ions. IR absorption spectra reveal the vibrations of several phosphate groups including the metaphosphate chains as the main structural building units together with the possible Pb?O vibrations.  相似文献   

18.
用高温固相法合成了Eu2+,Mn2+共激活的Ca2SiO3Cl2高亮度白色发光材料,并对其发光性质进行了研究. 该荧光粉在近紫外光激发下发出强的白色荧光,Eu2+中心形成峰值为419 nm和498 nm的特征宽带,通过Eu2+中心向Mn2+中心的能量传递导致了峰值为578 nm的发射,三个谱带叠加从而在单一基质中得到了白光. 激发光谱均分布在250—415 nm的波长范围,红绿蓝三个发射带的激发谱峰值分别位于385 nm,412 nm,370 nm和396 nm处,可以被InGaN管芯产生的紫外辐射有效激发. Ca2SiO3Cl2:Eu2+,Mn2+是一种很有前途的单一基质白光LED荧光粉.  相似文献   

19.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

20.
LaMgAl11O19 phosphor doped with Eu and Mn ions has been prepared by the urea combustion route. The as-prepared phosphor was studied using X-ray diffraction, electron paramagnetic resonance (EPR), diffuse reflectance and photoluminescence studies. The EPR spectra of LaMgAl11O19:Eu, Mn phosphor exhibit signals with the effective g values at g = 1.98, 4.29 and 7.23. The resonance signals at g = 1.98 and 4.29 were attributed to Mn2+ ions in tetrahedral and rhombic environment, respectively. The resonance signal at g = 7.23 was attributed to Eu2+ ions. The optical spectrum of this phosphor exhibits an intense band in the visible region and this band has been attributed to spin-allowed 5Eg → 5T2g transition of Mn3+ ions. Upon excitation at 324 nm, the material displays emission in the blue, green and red spectral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号