首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation and N.M.R.-Spectroscopic Characterization of Alk-(ar-)oxy Derivatives of Trichlorophosphazene-N-phosphoryldichloride, Cl3P?N? P(O)Cl2, Imido- and N-Methylimidodiphosphoryltetrachloride, Cl2P(O)NHP(O)Cl2 and Cl2P(O)N(CH3)P(O)Cl2 The ester chlorides and esters P2NOCl5?x(OR)x (x = 1?5), P2(NH)O2Cl4?x(OR)x (x = 1–4) and P2(NCH3)O2Cl4–x(OR)x (x = 1–4) derived from the title compounds by substitution of chlorine atoms by alk- or aroxy groups are characterized by their 31P-n.m.r. data. The possibilities for forming these compounds by alcoholysis, chloridolysis, dealkylation and P? N-bond formation are discussed.  相似文献   

2.
Mo2O3Cl4(Pyridine)4 · CH2Cl2. Synthesis, IR Spectrum, and Crystal Structure Reduction of MoO2Cl2(pyridine)2 with triphenylphosphane in toluene and recrystallisation from CH2Cl2 yields brown crystal needles of the complex Mo2O3Cl4(pyridine)4 · CH2Cl2. The compound crystallizes monoclinic in the space group P21/c with four formula units per unit cell of the dimensions a = 1 234.6 pm; b = 1 593 pm, c = 1 522.3 pm and β = 105.66° A structural investigation by X-ray methods (3 276 independent observed reflexions, R = 0.033) reveals the molecule with two molybdenum atoms in a distorted octahedral coordination linked by an almost linear Mo? O? Mo bridge with bond distances of 167 and 168 pm, respectively. The chlorine atoms are located in trans-position to the oxygen atoms which have different trans effects: The Mo? Cl bond opposite the bridge (length 242 pm) is 8 pm shorter than the bond in trans position to the terminal oxo ligands. The pyridine nitrogen atoms are in trans position to each other and complete the coordination of the molybdenum atoms. The i.r. spectrum of the compound is reported.  相似文献   

3.
Under mild conditions, trialkylalanes (Et3Al and Bui 3Al) in chlorine-containing solvents (CH2Cl2 or ClCH2CH2Cl) react with cyclic acetals and orthoformates to form glycol monoethers and dialkylacetals, respectively, in high yields. The 1H NMR spectroscopic data demonstrate that CH2Cl2 or ClCH2CH2Cl interacts with Bui 3Al.  相似文献   

4.
The oxidative degradation of [(HOCH2CH2)3PCH2OH]+Cl? ( 1 ) with Cl2 yields, dependent on the pH used, either (HOCH2CH2)3P?O ( 2 ) or (HOCH2CH2)2 (HOCH2) P?O ( 3 ). Chlorination of 2 and 3 with PCl5 produces the corresponding chlorides (ClCH2CH2)3P?O ( 4 ) and (ClCH2CH2)2 (ClCH2)P?O ( 5 ), respectively. Acetylation of 2 and 3 gives the corresponding esters (CH3CO2CH2CH2)3P?O ( 6 ), and (CH3CO2CH2CH2)2 (CH3CO2CH2)P?O ( 7 ), respectively. Reaction of 7 with HBr results in the formation of (BrCH2CH2)2 (BrCH2)P?O. Nucleophilic substitution of the chlorine atoms in 4 and 5 with alkoxide or mercaptide gives e.g., 9 , 10 , 11 or 11a , while treatment with tertiary amines yields the vinyl compounds (CH2?CH)3P?O ( 12 ) and (CH2?CH)2 (CH2Cl)P?O ( 13 ). 4 and 5 also undergo an Arbuzov type reaction with tertiary phosphites to give 14 and 15 , respectively, which on hydrolysis with conc. HCl give the corresponding acids 16 and 17 , respectively.  相似文献   

5.
Nitrosyl Complexes of Molybdenum (+II). Crystal Structures of [Mo(NO)Cl3 · POCl3]2 and [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 Solutions of MoCl5 in POCl3 react with NOCl forming the nitrosyl compound Mo(NO)Cl3 · 2POCl3 ( I ), which in CH2Cl2 cleaves off one solvate molecule, yielding the dimeric complex [Mo(NO)Cl3 · POCl3]2 ( II ). Reaction with AsPh4Cl in dichloro methane leads to the nitrosyl complexes AsPh4[Mo(NO)Cl4] · CH2Cl2 ( III ) and [AsPh4]2[Mo(NO)Cl5] · 2CH2Cl2 ( IV ), respectively. The i.r. spectra are recorded and assigned. [Mo(NO)Cl3 · POCl3]2 crystallizes monoclinic in the space group P21/c with two dimeric units per unit cell. The crystal structure was determined by X-ray diffraction methods (R = 0.040; 1391 observed, independent reflexions). Complex II is linked by chlorine bridges, forming a dimeric, centrosymmetric molecule of symmetry Ci. The N? O bond of the nitrosyl ligand is extremely short (108 pm), the Mo? N bond (181 pm) corresponds to a double bond. In trans position to the NO ligand, which is coordinated in linear array, there is the O atom of the solvate molecule POCl3. [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 crystallizes triclinic in the space group P1 with two units per unit cell (R = 0.039; 1967 observed, independent reflexions). The molybdenum atom is coordinated octahedrally by five Cl ligands and a nitrosyl group, as well coordinated in linear array (Mo? N? O 174°). The nitrosyl ligand exerts a significant trans-effect (r Mo? Cl(trans) = 247 pm, r MoCl4(eq)(average) = 239 pm).  相似文献   

6.
Preparation, Spectroscopic and Crystal Structure Investigations of [Cl4SbO2P(CH3)2]2 [Cl4SbO2P(CH3)2]2 was prepared from SbCl5 and HOP(O)(CH3)2 in CH2Cl2. The compound crystallizes in the space group P21/n with two dimeric units per unit cell; the lattice constants are a = 875, b = 1306, c = 923 pm and β 97.1°. Structural investigation by X-ray diffraction methods showed the Sb atoms in the dimeric units to be linked by O? P? O-bridges of the dimethylphosphinate groups to Sb2O4P2 eight-rings of approximate symmetry C2h. The vibrational spectrum (i.r., Raman) and the n.m.r. spectra (31P, 1H) consist with this structure.  相似文献   

7.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

8.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

9.
Reaction of ClCH2CH2PCl2 with ethylene oxide gives the phosphonous acid ester ClCH2CH2P (OCH2CH2Cl)2 which on heating to 120° rearranges to the phosphinic acid ester (ClCH2CH2)2P(O)OCH2CH2Cl ( 3 ). Chlorination of 3 with PCl5 in CCl4-solution yields the phosphinic chloride (ClCH2CH2)P(O)Cl ( 4 ), which on treatment with P2S5 at 170° produces the thioderivative, (ClCH2CH2)2P(S)Cl, (5). Treatment of 4 and 5 with alcohols, mercaptanes, or amines in the presence of an acid binding agent leads to the corresponding phosphinic and thiophosphinic acid derivatives, (ClCH2CH2) P (X)Y, (X = O, S; Y = OR, SR, NR2) ( 6 ). Reaction of 6 with excess base yields the corresponding divinylphosphinic and divinylthiophosphinic acid derivatives (CH2 = CH)2P (X) Y (X = O, S; Y = OR, SR, NR2) ( 7 ). Bis-(ß-chloroethyl)-phosphinates, e. g. (ClCH2CH2)2P (O) OEt, undergo a Michaelis-Arbuzov reaction when heated with phosphites to 160–170° to give bis-(phosphonylethyl)-phosphinates, e.g. (EtO) (O)P[CH2CH2CH2P(O)(OEt)2]2 ( 8 ), which on hydrolysis with conc. HCl under reflux yield the corresponding acid HO2P(CH2CH2PO3H2)2.  相似文献   

10.
(PPh4)2[WO2Cl3]2 · 2 CH2Cl2. Synthesis, Vibrational Spectrum, and Crystal Structure Depending on the stoichiometry and the solvent, dichloromethane or 1.2-dichloroethane, WO2Cl2 reacts with tetraphenylphosphonium chloride affording (PPh4)2[WO2Cl4] or (PPh4)2[WO2Cl3]2, respectively. Both compounds are easily soluble in dichloromethane, from which they can be crystallized under incorporation of two molecules CH2Cl2 per formula unit. The crystalline compounds have been characterized by their IR and Raman spectra. According to the X-ray crystal structure analysis, (PPh4)2[WO2Cl3]2 · 2 CH2Cl2 crystallizes in the triclinic space group P1 with one formula unit per unit cell (986 independent observed reflexions, R = 0.061). Lattice constants: a = 1100.2, b = 1116.9, c = 1238.4 pm, = 69.40, = 80.46 and = 85.62°. The crystals consist of PPh4 ions, centrosymmetric [WO2Cl3]22? anions and CH2Cl2 molecules. In the anions, the tungsten atoms are linked via two oxo bridges with WO distances of 184 and 252 pm. The distorted octahedral coordination around each tungsten atom is completed by three terminal chloro and one terminal oxo ligand (WO bond length 166 pm), the latter being in trans position to the longer WO bridging bond. (PPh4)2[WO2Cl4] · 2 CH2Cl2 also forms triclinic crystals that are isotypic with (PPh4)2[WOCl5] · 2 CH2Cl2 and in which the anions must have orientational disorder.  相似文献   

11.
Vibrational Spectra and Force Constants of Cl3SiP(CH3)2 and Cl3SiAs (CH3)2 The i.r. and Raman spectra of Cl3SiP(CH3)2 and Cl3SiAs (CH3)2 have been recorded and assigned. A normal coordinate analysis has been made using a modified valence force field. The SiP force constant is slightly higher than those of alkylsilylphosphines, whereas a similar effect is not found for the SiAs bond.  相似文献   

12.
4-Methyl-1,2,3,5-dithiadiazolium Salts. Crystal Structures of(CH3CN2S2)5[CoCl4]Cl3 and (CH3CN2S2)Cl 4-Methyl-1,2,3,5-dithiadiazolium tetrachlorocobaltate trichloride, (CH3CN2S2)5[CoCl4]Cl3, was obtained by reaction of trithiazyl chloride, (NSCl)3, with CoCl2 in acetonitrile; it forms brown, moisture sensitive crystals. With tetraphenylarsonium chloride in CH2Cl2 it yields yellow crystalline (CH3CN2S2)Cl and (AsPh4)2CoCl4. The IR spectra of the title compounds are reported and assigned. Theit crystal structures were determined by X-ray diffraction. Crystal data: (CH3CN2S2)5[CoCl4]Cl3, orthorhombic, P212121, Z = 4, a = 830, b = 1603, c = 2443 pm at 180 K (structure determination with 1787 observed independent reflexions, R = 0.070); (CH3CN2S2)Cl, triclinic, P212121, Z = 4, a = 749, b = 819, c = 1015 pm, α = 84.9, β = 67.4, γ = 84.6° at 296 K (2653 reflexions, R = 0.040). Both compounds are ionic, having chloride and distorted tetrahedral CoCl42? anions and planar 4-methyl-1,2,3,5-dithiadiazolium cations which nearly fulfill C2v symmetry. The (CH3CN2S2)5[CoCl4]Cl3 structure contains five symmetry independent cations, (CH3CN2Cl has two symmetry independent cations, all being nearly equal. No nitrogen atom but all sulfur atoms of the cations have contact with three to five chlorine atoms, and as a rule there is one chloride ion which is coplanar with the cation and exhibits rather short distances to both S atoms (288 to 309 pm); therefore, the positive charge of the cations must be concentrated on the sulfur atoms.  相似文献   

13.
Adducts of Oxotetrachloro-niobate (V). Formation, Vibrational Spectra, and Crystal Structures of PPh4[NbOCl4(OH2)] and (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2 Crystalline (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2 was obtained by hydrolysis of PPh4[NbSCl4] in the presence of POCl3 in CH2Cl2. Experiments to obtain the same compound from PPh4Cl, POCl3, NbCl5, and H2O yielded PPh4[NbOCl4(OH2)]. I.R. spectra of both compounds are discussed. The crystal structure determinations with X-ray diffraction data in both cases show quadratic-pyramidal NbOCl4? ions to which a molecule of either H2O or a PO2Cl2? ion is attached in trans-position to the O atom. PPh4[NbOCl4(OH2)]: tetragonal, space group P4/n, a = 1 308, c = 734 pm, Z = 2, packing as in the AsPh4[RuNCl4] type; refinement down to R = 0.046 for 681 reflexions. (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2: triclinic, space group P1 , a = 1172, b = 1187, c = 2105 pm, α = 88.40, β = 83.20, γ = 71.28°, Z = 2, packing similar as in (AsPh4)2[NbOCl5] · 2 CH2Cl2; refinement to R = 0.059 for 2 502 reflexions.  相似文献   

14.
Chlorothionitrene Complexes of Rhenium. Crystal Structure of AsPh4[ReCl4(NSCl)2] · CH2Cl2 Rhenium pentachloride reacts in POCl3 solution with (NSCl)3 forming the chlorothionitrene complexes [(Cl3PO)ReCl4(NSCl)] ( I ) and [(Cl3PO)ReCl3(NSCl)2] ( II ). I reacts with AsPh4Cl in CH2Cl2 solution under abstraction of SCl2 and POCl3, yielding AsPh4[ReNCl4], while II forms the complex AsPh4[ReCl4(NSCl)2] · CH2Cl2. The i.r. spectra of the compounds are discussed and assigned. The crystal structure of AsPh4[ReCl4(NSCl)2] · CH2Cl2 was determined and refined with X-ray diffraction data (R = 0.031 for 2785 reflexions). It crystallizes in the space group Pī with two formula units per unit cell; the lattice constants are a = 1119, b = 1144, c = 1473 pm, α = 77.6, β = 70.8 and γ = 71.2°. The two NSCl ligands have cis arrangement with nearly linear Re?N?S groups, with interatomic distances corresponding to double bonds. The Re? Cl bonds are somewhat longer than usual and show no trans-effect; this is possibly due to Cl…?H? C bridges.  相似文献   

15.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

16.
The triply chloro-bridged binuclear complexes [Ph3X=O···H···O=XPh3][Ru2Cl7(XPh3)2]·0.5(CH2Cl2)(H2O) (X = As or P) were obtained from [RuCl3(XPh3)2DMA]·DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.  相似文献   

17.
Contribution to the Chemistry of Phosphorus-Nitrogen Compounds. Reaction of Cl2(O)P? NH? P(O)Cl2 with Tetrahydrofuran As well as many phosphorus compounds, the imidodiphosphoryl tetrachloride HN(P(O)Cl2)2 reacts with a large excess of tetrahydrofuran to give the polytetrahydrofuran. Otherwise, if we use smaller molecular ratios THF/HN(P(O)Cl2)2 (1/2 to 3) a polytetrahydrofuran with short chains and N(ω-hydroxypolytetramethylenoxy)imidodiphosphoryl tetrachloride R? N(P(O)Cl2)2; R = H(O(CH2)4)n- are obtained at 22° or 30°C. The 1H and 31P n.m.r. spectra show that oxonium ions are formed with progressive additions of THF to HN(POCl2)2/CCl4 solution. Then two mechanisms have been considered by nucleophilic attack on carbon α of oxonium ion coming from: the free electronic dublett on oxygen of THF to give polytetrahydrofuran or (and) from the nitrogen of imido diphosphoryl tetra chloride anion ((Cl2OP)2N)? to obtain N(ω-hydroxypolytetramethylenoxy)imidodiphosphoryl tetrachloride.  相似文献   

18.
Preparation and Crystal Structure of (CH3NH3)8[NdCl6][NdCl4(H20)2]2Cl3 (CH3NH3)8[NdCl6][NdCl4 (H2O)2]2Cl3 is for the first time prepared and investigated by X-ray, single crystal work. It crystallizes in the monoclinic system (space group C2/m, Z = 2) with a = 9.358(5), b = 17.424(9), c = 15.360(8) Å, β = 108.30(4)°. The structure contains besides isolated Cl? ions distorted [NdCl6]3? octahedra and [NdCl4(H2O)2]? chains.  相似文献   

19.
The reaction of S4N4Cl2 with CH3OH gives S4N4(OCH3)2, a simple dimethoxoderivative of S4N4. Its overall geometry is analogous to other compounds of the S4N4X2 type. The chlorination of S4N4(OCH3)2 leads to the oxidation of one sulfur atom to SVI and CH3OS4N4(O)Cl is formed. The compounds were characterized by ir spectroscopy and their crystal structures were determined from single crystal diffraction data collected at ?153°C. The presence of SVI in the molecule of CH3OS4N4(O)Cl is manifested by a marked shortening of the bonds formed by this atom as compared with S4N4Cl2 and S4N4(OCH3)2.  相似文献   

20.
Cationic and Anionic Edge-Connected Dimers in [Dy2(dibenzo-18-crown-6)2Cl4][Dy2(CH3CN)2Cl8]. Synthesis and Crystal Structure Colourless single crystals of 2 DyCl3 · dibenzo-18-crown-6 · CH3CN are obtained upon reaction of DyCl3 or KDy2Cl7 with dibenzo-18-crown-6-ether in acetonitrile. The crystal structure (triclinic, P1 , Z = 2; a = 1 105.6(2); b = 1 144.5(3); c = 1 367.8(3); α = 93.46(1); β = 92.27(1); γ = 117.45(1); R = 0.046; Rw = 0.033) contains cationic and anionic edge-connected dimers according to [Dy2(dibenzo-18-crown-6)2Cl4]2+ [Dy2(CH3CN)2Cl8]2+ where Dy1 and Dy2 are coordinated by 3 and 5 chloride ions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号