首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
Reactions of lanthanoid trichlorides with sodium cyclopentylcyclopentadienyl in THFafford bis(cyclopentylcyclopentadienyl) lanthanoid chloride complexes (C_5H_9C_5H_4)_2LnCl(THF)_n (Ln=Nd, Sm, n=1; Ln= Er, Yb, n= 0). The compound [CP'_2SmCl(THF)]_2 (2) (Cp' =cyclopentylcy-clopentadienyl) crystallizes from mixed solvent of hexane and THF in monoclinic space group P_2_1/cwith a = 11.583 (3), b = 23.019(6), c = 8.227 (2), β= 90.26 (2)°, V= 2194 (1)~3, D_c= 1.59 g/cm~3.μ= 28.6 cm~(-1), F(000) = 1060, Z= 2 (dimers). Its crystal molecule is a dimer with a crystallographicsymmetry center. The central metal atom Sm is coordinated to two Cp' rings, two bridging chlorineatoms and one THF forming a distorted trigonal bipyramid. The crystal of [Cp'_2ErCl]_2 (3) belongs tothe triclinic space group P with a = 11.264 (2), b= 13.296(5), c = 14.296(6), a = 96.99 (3), β=112.47(2), γ= 102.78(2)°, V= 1865(1)~3, D_c= 1.67 g /cm~3, μ= 48.0 cm~(-1), F(000) = 924, Z = 2 (dimers).The molecule is a dimer consisting of two Cp'_2 ErCl species bridged by two Cl atoms. The centralmetal atom Er is coordinated to two Cp' rings and two bridging chlorine atoms forming a pseudo-tetrahedron. All these complexes are soluble in THF, DME, Et_2O, toluene and hexane.  相似文献   

2.
研究了(CH_3C_5H_4)_3Ln·THF (Ln = Sm,Ho,Tb,Yb)与环戊二烯高产率生成 (C_5H_5)_3Ln·THF的新反应。反应产物经过了元素分析、质谱和X射线的表征。产 物(C_5H_5)_3Ln·THF的特征结构参数,如五元碳环的碳原子与中心金属的平均距 离,五元碳环质心与中心金属距离,配位的四氢呋喃氧原子与中心金属距离,由于 “镧系收缩现象”,随着中心原子序数的增加而减小。  相似文献   

3.
The reaction of LnCl_3 with K _9H_7(C_9H_7=indenyl)andK_2C_8H_8(C_8H_8=cyclooctatetraene)in tetrahydrofuran(THF)give thecorresponding complexes(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF.The synthesis of(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF(Ln=Pr,Nd)and crystal structure of(η~5-C_9H_7)Pr(η~8-C_8H_8)·2THF are described.  相似文献   

4.
自1969年首次报道稀土环辛四烯基化合物Eu(C_8H_8)和Yb(C_8H_8)的合成以来,相继合成K[Ln(C_8H_8)_2],[Ln(C_8H_8)Cl·2THF]_2和[Ln(C_8H_8)·2THF]等,还报  相似文献   

5.
1 INTRODUCTION The chemistry of divalent lanthanocenes has de- veloped rapidly. Attempts to extend the chemistry beyond the traditional realm of the lanthanocenes have led to the syntheses and structural characteri- zations of a number of lanthanide (II) complexes bearing various ligand systems. Aryloxide ligands have been attractive for their strong bonds with lan- thanide atoms and readily steric modification by the choice of substituents. A series of divalent lantha- nide aryloxides …  相似文献   

6.
Thermodynamical data of rare earth complexes with amino acid are important for engineering chemistry and fundamental chemistry. However, they have rarely been reported. In this work, a series of crystalline complexes of rare earth perchlorate coordinated with glutamic acid have been synthesized in water medium, and their thermodynamical data, including the heat capacity in low temperature range and the standard enthalpy of formation, were determined. These complexes were identified to be [RE2(Glu)2(H2O)8](C...  相似文献   

7.
SynthesisandCrystalStructureof[C_6H_5CH_2C_5H_4ErCl_2(THF)_3]·THFGaoFu-Xing;WeiGe-Cheng;JinZhong-Sheng;ChenWen-Qi(ChangchunInsti?..  相似文献   

8.
合成了三茚基稀土配合物(η~5-C_9H_7)_3Ln·OC_4H_8(Ln=Nd、Gd、Er),经元素分析、红外光谱、水解产物核磁共振谱及质谱表征,并测得了(η~5-C_9H_7)_3Nd·OC_4H_8(1)及(η~5-C_9H_7)_3Gd·OC_4H_8(2)的晶体结构。(1)、(2)均属六方晶系,P6_3空间群,Z=2。(1)的晶体学参数为a=b=1.1843(3)nm,c=1.0304(4)nm,V=1.25165(87)nm~3,D_c=1.49g·cm~(-3),最后一致性因子R=0.049;(2)的晶体学参数a=b=1.1805(2)nm,c=1.0236(2)nm,V=1.23536(56)nm~3,D_c=1.54 g·cm~(-3),R=0.023。平均Nd-C=0.2812nm,Gd-C=0.2795nm;Nd-O=0.2557(21)nm,Gd—O=0.2459(13)nm。配合物中四氢呋喃的四个碳原子处于完全无序状态。  相似文献   

9.
The title complexes {NH4 · [Ln(OVA)4]} n (Ln = Pr, Nd, Gd, and Ho; OVA = 2-hydroxy-3-methoxybenzoate) were synthesized in water and characterized by FT-IR, elemental analysis, TGA, and X-ray single-crystal diffraction analysis. Two distinct structure types were isolated. Structure type I with formula {NH4 · [Ln(OVA)4]} n (Ln = Pr, Nd, Gd) contains Ln–COO? quadruply-bridged helical 1-D chains, with all carboxylates bridging. The structure type II with formula {NH4 · [Ho(OVA)4]} n contains bridging and chelating carboxylates, resulting in Ho–COO? double helical 1-D chains. The passage from type I to type II structure is ascribed to the lanthanide contraction. These 1-D chains are extended to 3-D supramolecular architecture by hydrogen bonds.  相似文献   

10.
The thermal behavior of the complex Pr[(C5H8NS2)3(C12H8N2)] in a dry nitrogen flow was examined by TG-DTG analysis. The TG-DTG investigations indicated that Pr[(C5H8NS2)3-(C12H8N2)] was decomposed into Pr2S3 and deposited carbon in one step where Pr2S3 predominated in the final products. The results of non-isothermal kinetic calculations showed that the decomposition stage was the random nucleation and subsequent growth mechanism (n = 2/3), the corresponding apparent activation energy ?was 115.89 kJ·mol-1 and the pre-expo-nential constant ln[A/s] was 7.8697. The empirical kinetics model equation was proposed as/(α) =3/2(1-α)[-ln(1-α)]1/3.The X-ray powder diffraction patterns of the thermal decomposition products at 800℃under N2 atmosphere show that the product can be indexed to the cubic Pr2S3 phase. The transmission electron microscopy (TEM) of the final product reveals the particle appearance of a diameter within 40 nm. The experimental results show that the praseodymium sulfide nanocrystal can be prepared from thermal decomposition of Pr[(C5H8NS2)3(C12H8N2)].  相似文献   

11.
Several rare‐earth cyclotriphosphate hydrates were obtained from mixtures of sodium cyclotriphosphates and the respective rare‐earth chlorides. Nd(P3O9) · 3H2O [P$\bar{6}$ , Z = 3, a = 677.90(9), c = 608.67(9) pm, R1 = 0.016, wR2 = 0.038, 312 data, 36 parameters] was obtained by a solid state reaction and is isotypic with respective rare‐earth phosphate hydrates, while all the others adopt new structure types. Nd(P3O9) · 4.5H2O [C2/c, Z = 8, a = 1644.6(3), b = 756.11(15), c = 1856.1(4) pm, β = 97.25(3)°, R1 = 0.032, wR2 = 0.081, 1763 data, 194 parameters], Nd(P3O9) · 5H2O [P21/c, Z = 4, a = 773.75(15), b = 1149.1(2), c = 1394.9(3) pm, β = 106.07(3)°, R1 = 0.042, wR2 = 0.082, 1338 data, 194 parameters], Pr(P3O9) · 5H2O [P$\bar{1}$ , Z = 2, a = 745.64(15), b = 889.07(18), c = 934.55(19) pm, α = 79.00(3), β = 80.25(3), γ = 66.48(3), R1 = 0.059, wR2 = 0.089, 1468 data, 193 parameters], Na3Nd(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1059.78(18), b = 1207.25(15), c = 1645.7(4) pm, β = 99.742(17), R1 = 0.047, wR2 = 0.119, 1109 data, 351 parameters] and Na3Pr(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1061.42(16), b = 1209.0(2), c = 1635.5(3) pm, β = 99.841(13), R1 = 0.035, wR2 = 0.062, 1323 data, 350 parameters] were obtained by careful crystallization at room temperature. A thorough structure discussion is given. The infrared spectrum of Nd(P3O9) · 4.5H2O is also reported.  相似文献   

12.
13.
14.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln=Pr, Nd, Sm), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group I2/a. They contain two types of periodate ions: octahedral H4IO6 groups and two crystallographically different I2O10 groups, which consist of two edge‐sharing octahedra. These anions coordinate to the cations as bridging groups yielding a three‐dimensional network. Together with some water of crystallization, a coordination number of 9 is achieved around the lanthanide ions with a tri‐capped trigonal prismatic geometry.  相似文献   

15.
We report the syntheses, crystal structure, and magnetic properties of a series of distorted K2NiF4-type oxides Ln2Ca2MnNiO8 (Ln=Pr, Nd, Sm, and Gd) in which Ln/Ca and Mn/Ni atoms randomly occupy the K and Ni sites respectively. The Ln=La compound does not form. These compounds show systematic distortions from the ideal tetragonal K2NiF4 structure (space group I4/mmm) to an orthorhombic structure (space group Pccn) with buckled MO2 (M=Mn/Ni) layers. The degree of distortion is increased as the size of Ln decreases. Based on the magnetic data and X-ray absorption near edge spectra, we assigned MnIV and NiII. The Curie–Weiss plots of the high temperature magnetic data suggest strong ferromagnetic interactions probably due to MnIV–O–NiII linkages, implying local ordering of Mn/Ni ions to form ferromangnetic clusters in the MO2 layers. At low temperatures below 110–130 K, these compounds show antiferromagnetic behaviors because of MnIV–O–MnIV and/or NiII–O–NiII contacts between the ferromagnetic clusters. The Ln=Pr and Nd compounds show additional antiferromagnetic signals that we attribute to the interlayer interactions between the clusters mediated by the Pr3+ and Nd3+ ions in the interlayer spaces. The present compounds show many parallels with the previously reported Ln2Sr2MnNiO8 compounds.  相似文献   

16.
17.
Investigations about Iodoferrates: The Crystal Structures of Fe(thf)6(FeI3thf)2 · thf and Fe(CH2O)6(FeI4)2 · I2(thf = C4H8O) The crystal structures of FeI2 · 3 thf (i.e. Fe(thf)6(FeI3thf)2 · thf) ( 1 ) and Fe(CH2O)6(FeI4)2 · I2 ( 2 ) were determined from single crystal X-ray data. 1 crystallizes in the cubic space group Pa3, a = 1759.8 pm, Z = 4, 2 in the monoclinic space group P21/n, a = 997.4, b = 1669.4, c = 1082.6 pm, β = 93.11°, Z = 2. The structure of 1 is composed of octahedral Fe(thf)62+ cations and distorted tetrahedral [FeI3(thf)]-anions (Fe? I distance 261.1 pm). In 2 two tetrahedral tetraiodoferrate (III) anions are linked by an iodine molecule. The Fe? I distance was found to be 253.9 pm (mean, the I? I distance between FeI4? and I2 356.1 pm. The decomposititon of 1 in vacuum at elevated temperatures and the resulting formation of 2 from 1 are discussed.  相似文献   

18.
19.
Four new lanthanide complexes, [Nd(4-Pyta)3(H2O)2] n (1), [Ce(4-Pyta)3(H2O)2] n (2), [Eu(4-Pyta)3(H2O)2] n (3) and [Gd(4-Pyta)3(H2O)2] n (4), have been obtained from reaction of lanthanide(III) nitrate with 4-Pyta (4-pyridylthioacetate) in water. Their structures were characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The crystals belong to triclinic, space group P 1 and all complexes exhibit one-dimensional chains that arrange to form a three-dimensional supramolecular architecture by hydrogen bonds between the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号