首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

2.
锂离子电池用高电位正极材料LiNi0.5Mn1.5O4   总被引:1,自引:0,他引:1  
由于具有工作电压高、工作范围宽、比能量大、无污染、使用寿命长等优点,锂离子电池具有广阔的应用前景。 然而,目前商业化的锂离子电池仍无法满足电动汽车对电池低成本及高能量密度的要求。研发比能量更高、价格更低廉、寿命更长的锂离子电池成为电动汽车产业发展的关键。尖晶石结构的镍锰酸锂(LiNi0.5Mn1.5O4)具有三维扩散通道,有利于锂离子的传输,且结构稳定;其理论放电比容量可达147 mAh ·g-1。 更重要的是,其电压平台高达4.7 V,具有高的能量密度与功率密度,被认为是未来锂离子电池发展中最具前途与吸引力的正极材料之一。本文介绍了LiNi0.5Mn1.5O4的结构、制备方法、掺杂与包覆改性研究及其应用前景,着重介绍了材料的改性方法并指出LiNi0.5Mn1.5O4目前亟需解决的问题和研究重点。  相似文献   

3.
随着新能源电动汽车和大容量储能的快速发展,亟需开发高能量密度、高功率密度的锂离子电池。镍锰酸锂(LiNi0.5Mn1.5O4)由于具有高电压平台(4.7V)、较高的能量密度和功率密度、资源丰富、成本低等优点,被认为是最具潜力的锂离子电池正极材料之一。然而,在高温条件下,LiNi0.5Mn1.5O4会与电解液发生严重的界面副反应,导致循环性能变差,这严重制约了其商业化进程。因此,改善LiNi0.5Mn1.5O4的高温特性成为锂离子电池领域的研究热点之一。本文对近期LiNi0.5Mn1.5O4材料相关研究的主要成果进行综述,以LiNi0.5Mn1.5O4的基本特性和现存挑战入手,着重关注离子掺杂、表面包覆和表面掺杂等策略提升材料的高温性能,并为后续研究提出建议和展望。  相似文献   

4.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

5.
层状LiNi0.5Mn0.5O2正极材料的合成与电性能研究   总被引:6,自引:1,他引:6  
钟辉  许惠 《化学学报》2004,62(12):1123-1127,MJ02
用共沉淀法于850 ℃在空气中煅烧24 h合成出层状LiNi0.5Mn0.5O2正极材料,并用XRD, SEM, 粒度分析和电性能测试考察了所得材料组成、结构、形貌及电化学性能.本层状LiNi0.5Mn0.5O2正极材料具有α-NaFeO2结构,六方晶系,R3m空间群,其晶胞参数为a=0.2897 nm, c=1.431 nm.当材料分别在在2.8~4.2, 2.8~4.4, 2.8~4.7 V间进行充放电时,其首次放电容量分别为145, 153, 195 mAh*g-1,且随着充放电电压升高,材料的首次放电不可逆容量增大,循环稳定性减弱.该材料显示出层状LiNiO2正极材料的充放电特性,在20次充放电循环后,材料仍保持原层状结构.  相似文献   

6.
层状LiNi0.5Mn0.5O2正极材料的优化合成及电化学性能   总被引:1,自引:0,他引:1  
闻雷  其鲁  徐国祥 《化学通报》2006,69(4):267-271
采用沉淀法首先得到了Ni0.5Mn0.5(OH)2沉淀物,以其为原料与LiOH反应制备了LiNi0.5Mn0.5O2正极材料。采用XRD、SEM、充放电测试等研究了其结构与电化学性能,同时研究了Li过量时对材料电化学性能和结构的影响。SEM分析表明,Ni0.5Mn0.5(OH)2与LiNi0.5Mn0.5O2产物均为微小晶粒团聚成的颗粒。LiNi0.5Mn0.5O2材料在2.5~4.4V电位区间内,首次放电容量为130mAh/g,0.2C倍率下,50次循环后的容量保持率为87.8%。锂过量有助于形成良好的层状结构材料,并能显著提高材料的比容量和循环性能,Li1.1Ni0.5Mn0.5O2的首次放电容量为149mAh/g,0.2C倍率下,50次循环后的容量保持率为92.6%。  相似文献   

7.
郑卓  吴振国  向伟  郭孝东 《化学学报》2017,75(5):501-507
采用碳酸盐共沉淀-高温固相法制备得到了颗粒平均尺寸约5 μm振实密度为2.1 g·cm-3的均匀微球形高镍LiNi0.5Co0.2Mn0.3O2材料.X射线衍射(XRD)分析和透射电镜(TEM)结果表明这种微球状LiNi0.5Co0.2Mn0.3O2材料具有完善的层状α-NaFeO2结构,过渡金属层原子呈[√3×√3]R30°排布.电化学性能测试结果证实了该材料具有优异的循环稳定性和高倍率性能.具体而言,在2.7~4.3 V,1C下循环100次后的放电比容量为150 mAh·g-1,容量保持率为94.6%,在30C的超高倍率下,放电比容量还能达到96 mAh·g-1.同时,该材料的储能能力也非常突出,在0.1C时比能量密度为687.83 Wh·kg-1(体积能量密度为1444.45 Wh·L-1),在30C时仍达335.27 Wh·kg-1(体积能量密度为704.07 Wh·L-1),非常有潜力应用于商业化高能量密度锂离子电池.  相似文献   

8.
以聚丙烯酰胺(PAM)为分散剂用微波—固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5C0.5O2。通过扫描电子显微镜(SEM)和X—射线粉末衍射(XRD)分析技术对材料的微观形貌和相结构进行了表征。恒电流充放电循环测试表明:材料的放电比容量高达154mAh/g,且有良好的循环性能。重点利用循环扫描伏安、计时电量和电化学交流阻抗测试技术,对材料在循环前后的电化学性能变化规律进行了探讨。结果表明,经过循环后材料的导电能力以及锂离子扩散能力都有了很大的提高。另外,材料中的锂含量对材料的导电能力也有很大的影响。  相似文献   

9.
采用聚乙烯吡咯烷酮(PVP)作为络合剂和燃料以凝胶燃烧法制备了具有优异高倍率放电性能的亚微米LiNi0.5Mn1.5O4材料.用热重/差热分析(TG/DTA)研究了凝胶的燃烧过程,用X射线衍射(XRD)、扫描电镜(SEM)和循环伏安(CV)研究了LiNi0.5Mn1.5O4材料的结构和形貌.结果表明材料为结晶良好的纯尖晶石相结构,由5μm左右的二次颗粒组成,颗粒大小分布均匀,一次晶粒发育良好,粒径在500nm左右.充放电测试表明材料的倍率性能和循环性能十分优异.在3.5至4.9V进行充放电测试,0.5C、1C、4C、8C和10C倍率下放电容量分别为131.9、127.6、123.4、118.4和113.7mAh·g-1.在10C大倍率放电条件下循环100、500和1000次的容量保持率分别为91.4%、80.9%和73.5%.  相似文献   

10.
正极材料LiNi0.5Co0.5O2的电化学性能研究   总被引:1,自引:0,他引:1  
以聚丙烯酰胺(PAM)为分散剂用微波—固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5Co0.5O2。通过扫描电子显微镜(SEM)和X—射线粉末衍射(XRD)分析技术对材料的微观形貌和相结构进行了表征。恒电流充放电循环测试表明:材料的放电比容量高达154mAh/g,且有良好的循环性能。重点利用循环扫描伏安、计时电量和电化学交流阻抗测试技术,对材料在循环前后的电化学性能变化规律进行了探讨。结果表明,经过循环后材料的导电能力以及锂离子扩散能力都有了很大的提高。另外,材料中的锂含量对材料的导电能力也有很大的影响。  相似文献   

11.
5 V正极材料LiNi0.5Mn1.5O4的自蔓延燃烧合成及性能   总被引:1,自引:1,他引:1  
通过自蔓延燃烧方法合成了性能优良的高电位5V锂离子电池正极材料LiNi0.5Mn1.5O4,利用傅立叶红外光谱(FTIR)、热分析(DSC/TG)、X射线衍射(XRD)、透射电镜(TEM)等方法对前驱物及样品的结构和物化性质等进行了分析和表征,考察了材料的电化学性能。结果表明,所制备样品具有单一的尖晶石相结构,具有4.7V充放电平台;在3.5V到5.2V之间进行充放电性能测试具有131mAh·g-1以上的可逆容量;在2C倍率下循环100次后的容量保持率为96%以上。  相似文献   

12.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2,并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响.采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌.使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能.结果表明,pH为7.0时,合成的材料颗粒更小、分布最均匀,材料具有良好的层状特征,且材料中锂镍的混排程度最小.电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能,在0.1C的倍率下,材料的首次放电比容量达到了185 mAh.g-1,在循环20周后,放电比容量仍然保持在160 mAh.g-1.X射线光电子能谱(XPS)测试结果表明,pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价,Mn为+4价.  相似文献   

13.
以IANO_3、Ni(NO_3)_2·6H_2O、Mn(NO_3)_2和CO(NH_2)_2为原料,采用低温燃烧法成功合成了5V锂离子电池正极材料LINi_(0.5)Mn_(15)O_4.通过XRD、SEM、循环伏安和恒电流充放电实验对合成样品进行了表征.结果表明,在850℃合成的正极材料LiNi_(0.5)Mn_(1.5)O_4具有立方尖晶石结构,规则的八面体晶形,粒度适中,比较均匀.合成产物具有良好的电化学性能,其充放电电压平稳,放电平台高达4.7V,4V放电平台几乎消失;放电容量达到124.92mAh/g,50次循环后放电容量仍可达到120.84mAh/g.  相似文献   

14.
锂离子电池镍掺杂尖晶石LiMn2O4正极材料的电子结构   总被引:2,自引:0,他引:2  
采用密度泛甬平面波赝势方法对LiMn2O4和LiNi0.5Mn1.5O4的几何结构进行了优化,并计算了相应的电子结构.计算的结果表明:在Li 脱嵌前后,LiMn2O4和LiNi0.5Mn1.5O4均为导体,且锂元素主要以离子形式存在于两种材料中,O2p轨道与Mn(Ni)的3d轨道形成了较强的共价键.Li 嵌入导致Mn(Ni)3d轨道的态密度峰发生移动.Ni的掺杂导致Mn(Ni)和O2p轨道的成键作用得以加强,电子在Mn(Ni)3d轨道的填充发生变化,从而提高了电池的充放电电压.  相似文献   

15.
尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)因制备成本低、 放电平台高及循环寿命长等优点, 越来越多地应用于大型储能设备、 能量转换设备、 动力汽车等领域. 然而LiNi0.5Mn1.5O4在高电压(5 V)充电状态下电解液易分解, 从而导致比容量降低以及循环性能衰退. 针对以上问题, 采用水热法制备磷酸钐(SmPO4)表面包覆改性LiNi0.5Mn1.5O4正极材料, 研究了SmPO4包覆量对LiNi0.5Mn1.5O4材料电化学性能的影响. 结果表明, 当SmPO4包覆量为0.5%(质量分数)时, 改性材料(LNMO@SP-0.5)的电化学性能最优, 在0.2C和5C倍率下的放电比容量分别为129.2和90.9 mA?h/g, 而未包覆的材料Pristine LNMO的放电比容量分别仅有114.2和77.7 mA?h/g. 在常温1C倍率下循环200次后, LNMO@SP-0.5的容量保持率为93.4%, 而Pristine LNMO的容量保持率仅为86.6%. 这归因于SmPO4包覆能够有效缓解LiNi0.5Mn1.5O4材料与电解液之间的副反应, 降低电极的极化程度和电荷转移电阻, 增加了Li+的扩散系数.  相似文献   

16.
LiNi0.5Mn1.5O4 prepared by a spray drying method was re-treated in N2 at 500, 600 and 700℃, respectively. Their structural and electrochemical properties were studied by means of Fourier transform infrared(FTIR), X-ray diffraction(XRD), and charge-discharge tests. The space group of the LiNi0.5Mn1.5O4 transforms from P4332 to Fd3 m at an annealing temperature of 700℃. The electrochemical characteristics of the treated samples are closely related to the annealing temperature. The sample treated in N2 at 500℃ shows both an improved rate capability and cyclic performance at a high temperature compared with the as-prepared sample, while the sample treated in N2 at 700℃ shows dramatically decrease in its reversible capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号