首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire safety on fuel containers can be improved at its initial stage if flame spreading can be controlled. Therefore, the understanding of the fundamental processes that control flame spreading will help us to determine a few control parameters that could be useful to improve security in fuel deposits. A series of experiments have been conducted in different fuel containers that helped to understand the basic mechanisms involved. A new phenomenon of convection ahead of the flame is observed in liquid fuels that do not appear in solid fuels. Finally, two control factors have been found useful to control fire spread: the initial fuel surface temperature and the convection zone observed in front of the flame. The first experimental results observed controlling these two factors led flame to spreading velocities of order 1 cm s–1 and, in some cases, flame extinguishes.  相似文献   

2.
Flame propagation over liquid alcohols   总被引:1,自引:0,他引:1  
Summary The different spreading regimes above liquid fuels have been experimentally described for a wide range of initial surface temperatures. Five different spreading regimes are observed. The flame spreading driving parameter has been found. The critical transition temperatures between these regimes have been characterized; they present common characteristics for the four alcohols (methanol, ethanol, propanol and butanol) used in the experiments. A preheating zone ahead of the flame (produced by thermocapillarity) has been observed. The initial surface temperature of the liquid fuel results to be a control parameter of flame spreading; therefore, it can be applied to improve fire safety conditions in fuel containers.  相似文献   

3.
The different spreading regimes above liquid fuels have been experimentally characterized for surface temperatures close to the flash-point temperature. Two different spreading regimes are observed: for temperatures larger than some critical value, flame spreading velocity is well described by the De Ris solid fuel-like model. For temperature values lower than the critical one, a preheating thermocapillary region has been observed in the fuel, which can be described by a purely thermodynamic non-reactive model. The critical transition temperature has shown to present common characteristics for the four alcohols used in the experiments.  相似文献   

4.
A comprehensive analysis of hydrogen/oxygen and hydrocarbon/oxygen counterflow diffu-sion flames has been conducted using corresponding detailed reaction mechanisms. The hydrocarbon fuels contain n-alkanes from CH4 to C16H34. The basic diffusion flame struc-tures are demonstrated, analyzed, and compared. The effects of pressure, and strain rate on the flame behavior and energy-release rate for each fuel are examined systematically. The de-tailed chemical kinetic reaction mechanisms from Lawrence Livermore National Laboratory(LLNL) are employed, and the largest one of them contains 2115 species and 8157 reversible reactions. The results indicate for all of the fuels the flame thickness and heat release rate correlate well with the square root of the pressure multiplied by the strain rate. Under the condition of any strain rate and pressure, H2 has thicker flame than hydrocarbons, while the hydrocarbons have the similar temperature and main products distributions and almost have the same flame thickness and heat release rate. The result indicates that the fuels composed with these hydrocarbons will still have the same flame properties as any pure n-alkane fuel.  相似文献   

5.
依据RP-3航空煤油的成分,考虑平均分子量及碳氢摩尔比等性质,本文提出其三组分替代燃料模型,其中正癸烷74.24%、1,3,5-三甲基环己烷14.11%和正丙基苯11.65%(质量分数)。采用机理生成程序ReaxGen得到详细化学反应机理;采用机理简化程序ReaxRed,运用直接关系图法与主成分分析法获得高温骨架机理(79物种,311反应)。该机理针对多个工况进行了点火延迟时间与层流火焰速度的验证,能较好地预测实验结果。路径分析结果表明高温下替代燃料通过氢提取反应、单分子裂解反应及β-断键反应消耗。敏感性分析表明高温点火过程由多种小分子自由基(H、CHO、C2H3等)的氧化及分解反应和大分子燃料的氢提取反应控制;影响火焰传播过程的关键反应来源于C0-C3的小分子核心机理。本文所提出的这个尺寸较小但精度较高的骨架机理可用于发动机燃烧过程的高保真数值模拟。  相似文献   

6.
A fuel‐rich premixed laminar methyl methacrylate (MMA)/O2/Ar flame at low pressure (30 Torr) with the equivalence ratio (?) of 1.60 is studied in this work. Synchrotron vacuum ultraviolet photoionization combined with molecular beam mass spectrometry is employed to identify the combustion intermediates including isomeric intermediates. The observed combustion intermediates can be classified as four types: radicals, non‐cyclic hydrocarbons, cyclic hydrocarbons and oxygenates. Benzene is the unique aromatic hydrocarbon detected in this work, and several oxygenates with two oxygen atoms are identified. Mole fraction profiles of most intermediates are evaluated, which can help understand the MMA combustion mechanism under fuel‐rich conditions. The similarities among rich flames of MMA and other oxygenated fuels, as well as the characteristics of rich MMA flame, are also discussed. The results show that combustion of MMA not only reduces soot emissions, but also has low concentrations of some potential toxic by‐products. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
大分子碳氢燃料的低温化学反应及两阶段点火特性会显著影响火焰的分区及燃烧情况。本文采用数值模拟的方法探究了正庚烷/空气预混混合气在RATS燃具上的湍流火焰传播,与试验结果具有一致性。模拟使用的是44种物质,112步的正庚烷简化动力学机理。使用Open FOAM的reacting Foam求解器建立了简化模拟流道及出口的三维模型,模拟了在大气环境下,初始反应温度450–700 K、入口速度6 m·s~(-1)与10 m·s~(-1)、焰前流动滞留时间100 ms及60 ms、当量比φ=0.6的正庚烷/空气混合气湍流火焰燃烧情况。结果发现,标准化湍流燃烧速度与混合气初始温度以及流动滞留时间有关。在低温点火阶段,正庚烷氧化程度受到初始温度与速度的影响,燃料分解并在预热区中产生大量中间物质如CH_2O,继而会影响湍流火焰燃烧速度。随着初始反应温度的升高,湍流燃烧火焰逐渐由化学反应冻结区过渡到低温点火区;温度超过一定数值后,燃料不再发生低温反应,此时燃烧位于高温点火区域。  相似文献   

8.
A detailed reaction mechanism for n-heptane oxidation has been compiled and subsequently simplified. The model is based on a kinetic model for C1-C4 fuel oxidation of Hoyermann et al. [Phys. Chem. Chem. Phys., 2004, 6, 3824] and a detailed mechanism for n-heptane oxidation developed by Curran et al. [Combust. Flame, 1998, 114, 149]. The generated mechanism is kept compact by limiting the application of the low temperature oxidation pathways to the fuel molecule. The first reaction steps and the complex low temperature paths in the oxidation process have been simplified and reorganized by linear chemical lumping. The reported procedure allows a decrease in number of species and reactions with only a minor loss of model accuracy. The simplified model is of very compact size and gives an advantageous starting point for further model reduction. By this chemically lumped general mechanism without further adjustments the large set of experimental data for the high and low temperature oxidation (ignition delay times, species concentration profiles, heat release and engine pressure profiles, flame speeds and flame structure data) for conditions ranging from very low to high temperatures (550-2300 K), very lean to extremely fuel rich (0.22 < phi < 3) mixtures and pressures between 1 and 42 bar is consistently described providing a basis for reliable predictions for future applications, (i) building reaction mechanisms for similar but chemically more complex fuels (e.g. iso-octane, n-decane,...) and (ii) calculating complex flow fields ("fluid dynamics") after further simplification with advanced reduction tools.  相似文献   

9.
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch‐melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG‐IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The requirements for improving the efficiency of internal combustion engines and reducing emissions have promoted the development of new combustion technologies under extreme operating conditions (e.g., lean combustion), and the ignition and combustion characteristics of fuels are increasingly becoming important. A chemical kinetic reduced mechanism consisting of 115 species and 414 elementary reactions is developed for the prediction of ignition and combustion behaviors of gasoline surrogate fuels composed of five components, namely, isooctane, n-heptane, toluene, diisobutylene, and cyclohexane (CHX). The CHX sub-mechanism is obtained by simplifying the JetSurF2.0 mechanism using direct relationship graph error propagating, rate of production analysis, and temperature sensitivity analysis and CHX is mainly consumed through ring-opening reactions, continuous dehydrogenation, and oxygenation reactions. In addition, kinetic parameter corrections were made for key reactions R14 and R391 based on the accuracy of the ignition delay time and laminar flame velocity predictions. Under a wide range of conditions, the mechanism’s ignition delay time, laminar flame speed, and the experimental and calculated results of multi-component gasoline surrogate fuel and real gasoline are compared. The proposed mechanism can accurately reproduce the combustion and oxidation of each component of the gasoline-surrogate fuel mixture and real gasoline.  相似文献   

11.
Experimental conditions have been defined for the steady-state combustion of vertically positioned polymer rods burning at the top surface. Temperature and composition profiles through solid and gas phases of the system, polymer consumption rate, and flame height were measured, and the response of these parameters to changes of the oxygen concentration in the environment were determined. Measurements showed that unreacted oxygen diffused from the environment to the burning surface and was absorbed into the polymer, forming a well defined oxygen-rich layer. Concentration of chemically bound oxygen at the surface of this layer were high, e.g., with polypropylene ca. 26 wt-%, and identical with the stoichiometry of the gases leaving the surface and serving as fuel for the flame. The composition of the gas phase at the surface indicated the conversion of 11.4% of the hydrocarbon fuel to CO, CO2, and H2O. An energy balance for the system confirmed that fuel production in this surface layer takes place via simultaneous oxidative and pyrolytic degradation of the polymer, with exothermic processes supplying the energy for endothermic processes. Conductive and radiative contributions from the gas phase were found to play a minor role in maintaining fuel formation. The rate of degradation of a polymer to fuel, normalized to the area of the burning surface, was found to be independent of polymer supply rate and to increase with the oxygen concentration in the environment. The degradation process was successfully modeled in TGA experiments at temperatures and oxygen concentrations representative of the burning surface. The existence of an oxidative surface layer was confirmed and the TGA degradation rate related to the surface-to-volume ratio of the polymer sample. Compositional analysis of a methane diffusion flame of a geometry identical to that of the polymer flame, revealed the presence of unreacted oxygen throughout the preheating zone and at the surface of the burner. Conversion of fuel to final combustion products at the surface was 6.3%. Temperature and composition changes as a function of oxygen concentration in the environment were determined and compared with the polymer diffusion flame. It was concluded that a polymer flame, because of its autogenerative fuel production, possesses only one degree of freedom, viz., the oxygen concentration in the environment, in contrast to the conventionally fueled diffusion flame for which fuel supply rate is an additional independent parameter. Due to this single degree of freedom, the sensitivity of the polymer flame to environmental influences is increased. Effects caused by these extrinsic factors will be the subject of a separate report.  相似文献   

12.
本文在完善燃烧化学特性参数,发展更准确的混合物特性参数计算方法的基础上,提出一套完整的、精确的航煤替代燃料模型构建方法。并采用定容燃烧弹实验系统首次测量了初始温度420和460 K、压力0.1 MPa,实际HEF航煤以及代表性组分十氢萘的层流火焰传播速度,为本文发展和验证替代燃料模型提供充分的实验数据。依据该方法提出了摩尔分数为65%正十二烷、10%正十四烷、25%十氢萘三组分HEF航煤替代燃料模型。充分的的实验和计算结果验证表明,替代燃料模型与实际HEF航煤在物理特性和燃烧化学特性方面有很高的相似性。本文提出的HEF航煤替代燃料模型和实验测量的层流火焰传播速度,为后续化学反应机理的发展与验证奠定了基础。  相似文献   

13.
氨燃烧及反应机理研究进展   总被引:1,自引:0,他引:1  
现今的一系列环境和能源问题迫使人类急需寻找清洁的燃料以替代传统的化石燃料。氨作为一种富氢的无碳燃料,具有能量密度高、成本低、储运安全等优势,近年来受到了越来越多学者的关注,成为了一个研究热点。本文介绍了氨燃料的物化特性及燃烧特性,分析了氨与各种燃料混合燃烧在燃烧速度、火焰结构、污染物形成等方面的表现以及在发动机的应用情况,详述了氨燃烧机理及动力学模型的研究现状,指出有待进一步研究的问题并展望了氨燃烧研究的发展方向。  相似文献   

14.
The hydrogen fuel seems to be a good candidate to replace the energy obtained from some fossil fuels. Therefore this work explains the process of obtaining a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The development of a reduced mechanism consists in eliminating reactions that produce negligible influence on the combustion process. Moreover, for this mechanism, we obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify the intermediate species, the mixture fraction is decomposed into three parts, each part directly related to the mass fraction of a species. The governing equations are discretized using the second order finite-difference approach and are integrated in time using the second order simplified three-step Runge-Kutta scheme. Obtained results compare favorably with data in the literature for a 50/50 % volume H 2?N 2 jet diffusion flame. The main advantage of this strategy is the decrease of the work needed to solve the system of governing equations, by one order of magnitude for the hydrogen.  相似文献   

15.
A reversed-flow gas-chromatography (RF-GC) apparatus for the measurement of binary diffusion coefficients is described and utilized to measure the binary diffusion coefficients for several systems at temperatures from (300 to 723)K. Hydrocarbons are detected using flame ionization detection, and inert species can be detected by thermal conductivity. The present apparatus has been utilized to measure diffusion coefficients at substantially higher temperatures than previous RF-GC work. Characterization of the new apparatus was accomplished by comparing measured binary diffusion coefficients of dilute argon in helium to established reference values. Further diffusion coefficient measurements for dilute helium in argon and dilute nitrogen in helium (using thermal conductivity detection) and dilute methane in helium (using flame ionization detection) were performed and found to be in excellent agreement with literature values. The measurement of these well-established diffusion coefficients has shown that specific experimental conditions are required for accurate diffusion measurements using this technique, particularly at higher temperatures. Numerical simulations of the diffusion experiments are presented to demonstrate that artifacts of the analysis procedure must be specifically identified to ensure accuracy, particularly at higher temperatures.  相似文献   

16.
A study has been made of the effect of additives to the fuel of a turbulent diffusion flame on the formation of soot and polycyclic aromatic hydrocarbons (PAHs). Fuels containing a polystyrene thickener doped with benzene proved to have many advantages over unthickened fuels. Most significant were an increase in the burning time and the flash point. Nevertheless, polystyrene and benzene additives to a considerable extent increased the formation of soot and PAHs. The analysis of PAHs in this study was made by capillary gas chromatography (GC) and capillary gas chromatography/mass spectrometry (GC/MS). A total of 42 individual compounds were characterized by their retention indices and mass spectra.  相似文献   

17.
Gas-potentiometric analysis using oxide-ion-conducting solid electrolytes as stabilized zirconia is a worthwhile method for the investigation of combustion processes. In the case of gas and oil flames specific parameters like the flame contour, the degree of burn-out and mixing can be determined and information about flame turbulence and reaction density can be gained from the temporal resolution of the sensor signal. Measurements carried out with solid electrolyte oxygen sensors in a fluidized bed show that combustion processes of solid fuels are also analyzable. This analysis results in fuel specific burn-out curves finally leading to burn-out times and to parameters of a macrokinetics of the combustion process as well as to ideas about the burn-out mechanism. From the resulting constants of the effective reaction rate a reactivity relative to bituminous coal coke can be given for any solid fuel.  相似文献   

18.
Since poly(methyl methacrylate) is known to depolymerize largely to its monomer when heated, the chemical kinetics in the gaseous diffusion flame produced by this polymer in a fire may coincide with that of burning liquid methyl methacrylate. To test this hypothesis, flat diffusion flames were probed and extinguished adjacent to surfaces of each of these fuels. Profiles of temperature and of concentrations of stable chemical species are reported, as are gas velocities of approach flow required to produce extinction for various oxygen/nitrogen ratios of the stream. Results revealed structural differences attributable to differing thermal properties of the fuels. Many fuel species were observed in the gas phase, their profiles being partially rationalized on the basis of a suggested decomposition mechanism for gaseous methyl methacrylate. Overall kinetic parameters for gasphase combustion, obtained by use of extinction results in a previously developed theory, are nearly the same for the polymer and monomer but appear to differ by amounts exceeding experimental uncertainties. It is suggested that this may be traced to small differences in fuel species leaving the condensed phase which, for the polymer, is covered by a thin, two-phase region.  相似文献   

19.
Previous studies suggest that structure and reactivity of soot depend on combustion conditions like the fuel/oxygen ratio and nature of fuels. However, the essence of how combustion conditions affect physical and chemical properties of soot is still an open question. In this study, soot samples were prepared by combusting toluene, n-hexane, and decane under controlled conditions, and their hydrophilic properties, morphology, microstructure, content of volatile organic compounds, and functional groups were characterized. The hydrophilicity of n-hexane and decane flame soot increased with decreasing fuel/oxygen ratio, while it almost did not change for toluene flame soot. Fuel/oxygen ratio had little effect on the morphology of aggregates and the graphite crystallite size. The primary particle size and the content of volatile organic compounds on soot decreased with decreasing fuel/oxygen ratio. Less hydrophobic groups (C-H) and more hydrophilic groups (C═O) were observed on lean n-hexane and decane flame soot than that on the corresponding rich flame soot. Volatile organic compounds had little effect on the hydrophilicity of soot while the hydrophilicity correlated linearly with the ratio of C═O content to C-H content. The hydrophilic functional groups were found to be mainly located at graphene layer edges and on surface graphene layers in soot.  相似文献   

20.
The traditional technologies for industrial and agricultural effluent treatment are often energy-intensive. Herein, we suggest an electrochemical redox strategy for spontaneous and simultaneous decontamination of wastewater and generation of both fuels and electricity at low cost. Using hydrazine and nitrate effluents as a demonstration, we propose a hydrazine-nitrate flow battery (HNFB) that can efficiently purify the wastewater and meanwhile generate both ammonia fuel and electricity with the assistance of our developed bimetallic RuCo precatalyst. Specifically, the battery delivers a peak power density of 12 mW cm−2 and continuously operates for 20 h with an ammonia yield rate of ca. 0.38 mmol h−1 cm−2 under 100 mA cm−2. The generated electricity can further drive a hydrazine electrolyzer to produce hydrogen fuel. Our work provides an alternative pathway to purify wastewater and generate high value-added fuels at low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号