首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过酸氧化法将氧化石墨烯进一步“切割”制备石墨烯量子点(GQDs),在100℃水热条件下,用氨水处理石墨烯量子点制备得到氨基功能化石墨烯量子点(N-GQDs)。傅里叶变换红外光谱证明NH3可以有效地进攻环氧基碳和羧基碳,形成羟胺和酰胺基。原子力显微镜结果表明NH3不仅能够有助于产生更小的量子点,还对石墨烯纳米片有致孔作用。氨基功能化之后,由于C-O-C相关的n-π*跃迁受到抑制,N-GQDs发光具有更弱的激发波长依赖性,并使其荧光量子产率从0.3%提高至9.6%。时间分辨发光光谱表明,相比含氧基团,含氮基团相关的局域电子激发态具有更长的荧光寿命和更弱的发射光谱依赖性。  相似文献   

2.
《中国化学快报》2020,31(8):2063-2066
Graphene quantum dots (GQDs) have both the properties of graphene and semiconductor quantum dots, and exhibit stronger quantum confinement effect and boundary effect than graphene. In addition, the band gap of GQDs will transform to non-zero from 0 eV of graphene by surface functionalization, which can be dispersed in common solvents and compounded with solid materials. In this work, the SnO2 nanosheets were prepared by hydrothermal method. As the sensitizer, nitrogen-doped graphene quantum dots (N-GQDs) were prepared and composited with SnO2 nanosheets. Sensing performance of pristine SnO2 and N-GQDs/SnO2 were investigated with HCHO as the target gas. The response (Ra/Rg) of 0.1% N-GQDs/SnO2 was 256 for 100 ppm HCHO at 60 °C, which was about 2.2 times higher than pristine SnO2 nanosheet. In addition, the material also had excellent selectivity and low operation temperature. The high sensitivity of N-GQDs/SnO2 was attributed to the increase of active sites on materials surface and the electrical regulation of N-GQDs. This research is helpful to develop new HCHO gas sensor and expand the application field of GQDs.  相似文献   

3.
Graphene quantum dots (GQDs) have attracted considerable interest due to their unique physicochemical properties and various applications. For the first time it is shown that GQDs surface‐functionalized with hydrocarbon chains (i.e., amphiphilic GQDs) self‐assemble into unilamellar spherical vesicles in aqueous solution. The amphiphilic GQD vesicles exhibit multicolor luminescence that can be readily exploited for membrane studies by fluorescence spectroscopy and microscopy. The GQD vesicles were used for microscopic analysis of membrane interactions and disruption by the peptide beta‐amyloid.  相似文献   

4.
Hydrothermal synthesis using graphene oxide (GO) as a precursor has been used to produce luminescent graphene quantum dots (GQDs). However, such a method usually requires many reagents and multistep pretreatments, while can give rise to GQDs with low quantum yield (QY). Here, we investigated the concentration, the temperature of synthesis, and the pH of the GO solution used in the hydrothermal method through factorial design experiments aiming to optimize the QY of GQDs to reach a better control of their luminescent properties. The best synthesis condition (2 mg/mL, 175 °C, and pH = 8.0) yielded GQDs with a relatively high QY (8.9%) without the need of using laborious steps or dopants. GQDs synthesized under different conditions were characterized to understand the role of each synthesis parameter in the materials' structure and luminescence properties. It was found that the control of the synthesis parameters enables the tailoring of the amount of specific oxygen functionalities onto the surface of the GQDs. By changing the synthesis' conditions, it was possible to prioritize the production of GQDs with more hydroxyl or carboxyl groups, which influence their luminescent properties. The as-developed GQDs with tailored composition were used as luminescent probes to detect Fe3+. The lowest limit of detection (0.136 μM) was achieved using GQDs with higher amounts of carboxylic groups, while wider linear range was obtained by GQDs with superior QY. Thus, our findings contribute to rationally produce GQDs with tailored properties for varied applications by simply adjusting the synthesis conditions and suggest a pathway to understand the mechanism of detection of GQDs-based optical sensors.  相似文献   

5.
《化学:亚洲杂志》2017,12(12):1272-1276
The development of a facile strategy for conversion of graphene quantum dots (GQDs) into crystalline graphite is of great practical significance and still remains challenging. Herein, rationally assembled crystalline‐intercrossed graphite nanocapsules (CI‐GNCs) have been realized by a one‐step electrochemically induced strategy with the assistance of a soft template, in which the GQDs act as the initial building blocks. The as‐prepared CI‐GNCs exhibit highly crystalline graphitic nanostructures. Moreover, they possess promising electrocatalytic activity for the oxygen reaction reduction (ORR) in alkaline medium. This simple fabrication technology presents a great advance for synthesizing CI‐GNCs composite catalysts, which have potential as new metal‐free catalysts for efficient ORR applications.  相似文献   

6.
The present study was aimed to use of N doped graphene quantum dots (N-GQDs) and N,K co-doped graphene quantum dots (N,K-GQDs) as a fluorescence quenching sensor to determine both mercury and copper in water sample, simultaneously using simple fluorescence protocol. Each of N-GQDs or N,K-GQDs was optimized separately with 1–5% (w/v) HNO3 or KNO3, respectively, and their quantum yields were determined and compared. It was found that N-GQDs, obtained from 3% (w/v) HNO3 doped resulted higher fluorescence intensity at the maximum excitation and emission wavelengths of 370 and 460 nm, respectively, with higher quantum yield (QY = 83.42%) compared with that of undoped GQDs (QY = 16.35%). While N,K-GQDs obtained from 5%(w/v) KNO3 gave somewhat different fluorescence spectrum, but still had the same maximum excitation and emission wavelengths with rather highest QY (94.07%). However, it is interesting that detection sensitivity expressed as slope of their calibration curve (y = 5.43x − 19.48; r2 = 0.9971) of the N-GQDs is rather higher than that (y = 1.29x + 17.66; r2 = 0.9977) of the N,K-GQDs for Hg2+ fluorescence quenching sensor, and the fluorescence intensity of N-GQDs had better selectively quenching effect only by both Hg2+ and Cu2+. Thus, their quenching effects were selected to develop the fluorescence turn-off sensor for trace level of both metal ions in real water samples. For method validation, the N-GQDs exhibited high sensitivity to detect both Hg2+ and Cu2+ with wide linear ranges of 20–100 μM and 100–500 μM, respectively. Limit of detection (LOD) and limit of quantitation (LOQ) were 0.42 μM & 1.41 μM for Hg2+ and 13.19 μM & 43.97 μM for Cu2+, respectively, with their precision expressed as an intra-day and an inter-day analysis of 6.98% & 11.35% for Hg2+ and 11.78% & 9.43% for Cu2+, respectively. Also the study of matrix analysis of the water samples (drinking water and tap water), was carried out using N-GQDs and N,K-GQDs resulted good percentage recoveries in comparison with those using undoped GQDs under the same optimum conditions.  相似文献   

7.
Over the past 10 years, graphene quantum dots (GQDs) have grown into a highly innovative optical material in various research fields, including electronics, photonics, biotechnologies, etc. With the increasing implementation of GQDs in these fields, GQDs with tunable optical properties will emerge that could be especially suitable for applications in the field of integrated photonics. Herein, a short summary of the recent state of our research on the development of nitrogen‐functionalized GQDs with tunable optical properties and their integration into photodetectors is given.  相似文献   

8.
Graphene quantum dots (GQDs) have been widely studied in recent years due to its unique structure-related properties, such as optical, electrical and optoelectrical properties. GQDs are considered new kind of quantum dots (QDs), as they are chemically and physically stable because of its intrinsic inert carbon property. Furthermore, GQDs are environmentally friendly due to its non-toxic and biologically inert properties, which have attracted worldwide interests from academic and industry. In this review, a number of GQDs preparation methods, such as hydrothermal method, microwave-assisted hydrothermal method, soft-template method, liquid exfoliation method, metal-catalyzed method and electron beam lithography method etc., are summarized. Their structural, morphological, chemical composition, optical, electrical and optoelectrical properties have been characterized and studied. A variety of elemental dopant, such as nitrogen, sulphur, chlorine, fluorine and potassium etc., have been doped into GQDs to diversify the functions of the material. The control of its size and shape has been realized by means of preparation parameters, such as synthesis temperature, growth time, source concentration and catalyst etc. As far as energy level engineering is concerned, the elemental doping has shown an introduction of energy level in GQDs which may tune the optical, electrical and optoelectrical properties of the GQDs. The applications of GQDs in biological imaging, optoelectrical detectors, solar cells, light emitting diodes, fluorescent agent, photocatalysis, and lithium ion battery are described. GQD composites, having optimized contents and properties, are also discussed to extend the applications of GQDs. Basic physical and chemical parameters of GQDs are summarized by tables in this review, which will provide readers useful information.  相似文献   

9.
The development of well-organized and low-priced photoelectrocatalysts for the clean and efficient water splitting reaction is crucial. In this context, novel nitrogen-doped graphene quantum dots (N-GQDs) with high photoluminescence and upconversion emission have been synthesized as excellent light harvester. Subsequently, ordered hierarchical TiO? nanowires were decorated with upconversion N-GQDs as a photoanode by a simple preparation method to improve the photocatalytic performance in the visible and near-infrared (NIR) regions of solar light, not otherwise absorbable by bare TiO? nanostructures. Moreover, the enhancement of charge transfer efficiency and electron–hole separation according to the energy states of N-GQDs and TiO? are considered for the improved photocatalytic performance of water splitting. N-GQDs/TiO2 shows superior photoelectrocatalytic (PEC) performance, achieving a photocurrent density of 3.0 mA.cm?2 in 1.0 M KOH solution, which is eight times that of unmodified TiO? at an applied voltage of 1.23 V vs. RHE. The high stability and photoelectrocatalytic activity of oxygen evolution reaction in the presence of newly synthesized N-GQDs are confirmed by chronoamperometry, open-circuit potential measurement, and electrochemical impedance spectroscopy. The as-fabricated photoanode provides an increased solar light harvesting from UV–Vis to NIR due to the application of newly synthesized upconversion GQDs, which increase energy conversion with an appealing perspective.  相似文献   

10.
以绿色、简单、成本低的球磨方法制备的石墨烯为碳源,采用一步水热法成功制备了分散性好、尺寸分布均一、平均直径为(4.80 ± 0.20) nm、厚度为1~3层石墨烯烯量子点.分别采用高分辨透射电镜、原子力显微镜、傅里叶变换红外光谱、X射线光电子能谱、紫外-可见吸收光谱、荧光光谱等对石墨烯量子点进行形貌、结构以及荧光性能的表征. 合成的石墨烯量子点可用于Fe.3+的非标记、特异性检测,检测线性范围为2.0×10.-6~7.0×10.-4 mol/L,检出限为1.8×10.-6 mol/L(S/N=3),同时对检测机理进行了推断,证明此石墨烯量子点用于自来水中Fe.3+的检测的可行性;基于其低毒性和优良的生物相容性,所制备的石墨烯量子点可应用于细胞成像研究.本研究为碳纳米材料的制备提供了一种新途径,也为石墨烯量子点在生化分析、成像等方面的研究奠定了基础.  相似文献   

11.
《印度化学会志》2021,98(5):100069
Graphene quantum dots (GQDs) are becoming imperative functional carbon-based nanomaterials for use in a wide range of biological applications due to the unique optical and optoelectronic properties and also for having physical and chemical stable carbon network structure. Low toxicity, edge functionalization, tunable size, and photoluminescence properties of GQDs have attracted worldwide interests in recent years from academic and industrial point of view. The strong photoluminescence, good water solubility, and high drug loading capacity make GQDs useful for biosensing, bioimaging, and drug delivery. In this review, we have focused on the recent development in the synthesis methodologies and biological applications of GQDs.  相似文献   

12.
Biological imaging is an essential means of disease diagnosis. However, semiconductor quantum dots that are used in bioimaging applications comprise toxic metal elements that are nonbiodegradable, causing serious environmental problems. Herein, we developed a novel ecofriendly solvothermal method that uses ethanol as a solvent and doping with chlorine atoms to prepare highly fluorescent graphene quantum dots (GQDs) from seaweed. The GQDs doped with chlorine atoms exhibit high-intensity white fluorescence. Thus, their preliminary application in bioimaging has been confirmed. In addition, clear cell imaging could be performed at an excitation wavelength of 633 nm.  相似文献   

13.
Green luminescent, graphene quantum dots (GQDs) with a uniform size of 3, 5, and 8.2(±0.3)?nm in diameter were prepared electrochemically from MWCNTs in propylene carbonate by using LiClO(4) at 90?°C, whereas similar particles of 23(±2)?nm were obtained at 30?°C under identical conditions. Both these sets of GQDs displayed a remarkable quantum efficiency of 6.3 and 5.1?%, respectively. This method offers a novel strategy to synthesise size-tunable GQDs as evidenced by multiple characterisation techniques like transmission and scanning electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray diffraction (XRD). Photoluminescence of these GQDs can be tailored by size variation through a systematic change in key process parameters, like diameter of carbon nanotube, electric field, concentration of supporting electrolyte and temperature. GQDs are promising candidates for a variety of applications, such as biomarkers, nanoelectronic devices and chemosensors due to their unique features, like high photostability, biocompatibility, nontoxicity and tunable solubility in water.  相似文献   

14.
鞠剑  陈卫 《电化学》2014,20(4):353
银基氧还原电催化剂具有较高的电催化活性且价格相对低廉,因而受到广泛关注. 本文采用简单、预先合成的石墨烯量子点作为载体和还原剂,制得了负载于石墨烯量子点、且无保护剂和表面活性剂的表面洁净银纳米粒子(Ag NPs/GQDs). 电化学研究表明,Ag NPs/GQDs复合电催化剂的氧还原有较高的电催化活性,氧在碱性溶液中可经4电子途径还原为水. 与商业铂碳电极(Pt/C)相比,AgNPs/GQDs电极具有高催化电流密度、良好稳定性和极佳抗甲醇性能. 该银纳米粒子对开发高性能和低成本的非铂氧还原电催化剂有潜在的应用前景.  相似文献   

15.
Graphene quantum dots (GQDs) have received considerable attention for their potential applications in the development of novel optoelectronic materials. In the generation of optoelectronic devices, the development of GQDs that are regulated in terms of their size and dimensions and are unoxidized at the sp2 surfaces is desired. GQDs functionalized with bulky Fréchet’s dendritic wedges at the GQD periphery were synthesized. The single‐layered, size‐regulated structures of the dendronized GQDs were revealed by atomic force microscopy. The edge‐functionalization of the GQDs led to white‐light emission, which is an uncommon feature.  相似文献   

16.
Unsubstituted zinc phthalocyanine (ZnPc), 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ) and Zn tetrasulfo phthalocyanine (ZnTSPc) were non-covalently (electrostatic and/or π–π interaction) attached to graphene quantum dots (GQDs) to form GQDs-Pc nanoconjugates. Relative to Pcs alone, the presence of GQDs improved the triplet quantum yields with the following values: GQDs-ZnPc (0.73), GQDs-ZnTPPcQ (0.76) and GQDs-ZnTSPc (0.67). Respective Förster resonance energy transfer (FRET) efficiencies were calculated to be 0.81, 0.80 and 0.28. However, singlet oxygen generating abilities of the as-synthesized nanoconjugates were relatively low due to the screening effect of GQDs and quenching in water. This study shows that, the type of Pc, loading and solvent used are among the vital properties to consider when constructing GQD-nanoconjugate systems with optimal triplet quantum yield properties and investigation of their physicochemical properties.  相似文献   

17.
High-quality graphene quantum dots (GQDs) were prepared through a facile route of microwave-assisted one-step mild oxidation of cheap deoiled asphalt (DOA). The as-prepared DOA-derived GQDs dissolved in water with a much smaller and thinner size than most of the reported GQDs, and luminesced bright green light by excitation of 365 nm. Furthermore, the GQDs possessed excellent properties of excitation-tuned fluorescence behavior with a high quantum yield up to 16.4%. In addition, the GQDs showed amphipathic properties and could significantly reduce the interfacial tension, which give them great potential as surfactants for asphalt emulsion.  相似文献   

18.
A graphene quantum dots (GQDs)–chitosan (CS) composite film was prepared via successive electrodeposition of GQDs and CS on the surface of a glassy carbon electrode (GCE). The strong interactions between GQDs and CS resulted in the formation of a regular and uniform film, which can be applied in the electrochemical chiral recognition of tryptophan (Trp) enantiomers. CS in the composite film provides a chiral microenvironment, meanwhile, GQDs can amplify the electrochemical signals and improve the recognition efficiency. Due to the synergetic effect of GQDs and CS, chiral recognition of Trp enantiomers is achieved successfully. Compared with previous reports utilizing GQDs in photoluminescent research, this work opens a new avenue for broadening the applications of GQDs in the electrochemically chiral sensors.  相似文献   

19.
Graphene quantum dots (GQDs) have received much research attention due to their unique optical/electrical/magnetic features. However, the intrinsic relationship between the structure and properties of GQDs remains not fully understood, because the controlled synthesis and the accurate structure determination of GQDs are still a great challenge. Here, single-layered GQDs are successfully obtained by the hydrothermal treatment of intercalated citrate in the confined space of 2D interlayer galleries of layered double hydroxides (LDHs). The distinct molecular structures of the single-layered GQDs reveal that the blue photoluminescence of the GQDs derives from a rigid π-conjugate plane structure, which is in accordance with theoretical calculations. This work will open the door towards a quantitative understanding of the structure-property effects of GQDs.  相似文献   

20.
Similar to the popular older cousins, luminescent carbon dots (C-dots), graphene quantum dots or graphene quantum discs (GQDs) have generated enormous excitement because of their superiority in chemical inertness, biocompatibility and low toxicity. Besides, GQDs, consisting of a single atomic layer of nano-sized graphite, have the excellent performances of graphene, such as high surface area, large diameter and better surface grafting using π-π conjugation and surface groups. Because of the structure of graphene, GQDs have some other special physical properties. Therefore, studies on GQDs in aspects of chemistry, physical, materials, biology and interdisciplinary science have been in full flow in the past decade. In this Feature Article, recent developments in preparation of GQDs are discussed, focusing on the main two approaches (top-down and bottom-down). Emphasis is given to their future and potential development in bioimaging, electrochemical biosensors and catalysis, and specifically in photovoltaic devices that can solve increasingly serious energy problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号