首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of [N(n-Bu(4))](2)[B(9)H(9)] with oxygen in a mixture of dimethoxyethane and CH(2)Cl(2) leads to salts of the [B(7)H(7)](2-) dianion. This is the first convenient synthesis for a seven-vertex hydro-closo-borate anion. Protonation with NEt(3)·HCl resulted in salts of the [B(7)H(8)](-) monoanion. Both closo-borate anions were isolated and characterized by (1)H, (1)H{(11)B}, (11)B, and (11)B{(1)H} NMR spectroscopy. The temperature-dependent (1)H{(11)B}, (11)B, and (11)B{(1)H} NMR spectra of [B(7)H(8)](-) were also measured. The structure of [B(7)H(7)](2-) as well as of [B(7)H(8)](-) were determined by single-crystal X-ray diffraction.  相似文献   

2.
3.
The compound(n-Bu_4N)_2[W_2Cu_4S_8(S_2CNC_4H_8)_2]was obtained by the reaction of Bu_4NBr,(NH_4)_2WS_4,NaS_2NCC_4H_8 and CuCl in CH_3CN and CH_3OH.It crystallizes in the monoclinicspace group P2_1/c with unit cell parameters:a=21.875(5),b=16.843(4),c=17.745(5),β=101.69(6)°,V=6402(6)~3,Z=4,D_o=1.718 g·cm~(-3).The final R and R_w values converged to 0.055and 0.060 respectively.The structure consists of two‘butterfly’units[WS_4Cu_2]linked togetherby two weak Cu—S bonds and two bridging S_2CNC_4H_8 ligands.Infrared spectra gave charac-teristic absorptions at 495 cm~(-1) for W=S and 450,435,412 cm~(-1) for W—μ-S.  相似文献   

4.
Syntheses and Crystal Structures of [Pd9As8(PPh2)8] and [Pd9Sb6(PPh3)8] [PdCl2(PPh3)2] reacts with As(SiMe3)3 to give the new cluster [Pd9As8(PPh3)8] ( 4 ). 4 has been characterized by X-ray crystal structure analysis. It is a molecule in which four [Pd2(PPh3)2]-units are bridged by As2-units. A further Pd atom is located in the centre of the cluster. 4 crystallizes in the space group C2/c with four formula units per unit cell. The lattice constants at 200 K are: a = 3 970.6(3), b = 1 648.90(16), c = 3 266.30(20) pm, β = 131,44(4)°. The reaction of [PdCl2(PPh3)2] with Sb(SiMe3)3 yields [Pd9Sb6(PPh3)8] ( 5 ). 5 consists of a body centred cubic Pd9-cluster. All of the cube faces are capped by μ4-Sb-ligands. 5 crystallizes in the space group Pn3 with two formula units per unit cell. The lattice constants at 200 K are: a = b = c = 1 995.4(2) pm.  相似文献   

5.
The binary zirconium and hafnium polyazides [PPh4]2[M(N3)6] (M=Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride–azide exchange reactions with Me3SiN3 in the presence of two equivalents of [PPh4][N3]. The novel polyazido compounds were characterized by their vibrational spectra and their X‐ray crystal structures. Both anion structures provide experimental evidence for near‐linear M‐N‐N coordination of metal azides. The species [M(N3)4], [M(N3)5]? and [M(N3)6]2? (M=Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels.  相似文献   

6.
Collisionally activated decomposition (CA) spectra of [C4H8O]+˙ ions and the products of their metastable decompositions are used to refine a previously presented picture of the reactions of [C4H8O]+˙ ions. Metastable [C4H8O]+˙ isomers predominantly rearrange to the 2-butanone ion and decompose by loss of methyl and ethyl, although up to 38% of the methyl losses take place by other pathways to form \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = {\rm{CHCH = }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}}{\rm{.}} $\end{document} . The CA spectra of many of the [C4H8O]+˙ ions with the oxygen on the first carbon are very similar, consistent with those ions isomerizing largely to common structures before or after collision. However, several of these ions have unique CA spectra, so they must remain structurally distinct from the majority of the [C4H8O]+˙ ions below energies required for decomposition. The CA spectra of ions with the oxygen on the second carbon are distinct from those of ions with the oxygen on the first carbon, so there is limited interconversion of the non-decomposing forms of the two types of ions. A potential energy diagram for the reactions of metastable [C4H8O]+˙ ions is constructed from appearance energy measurements. As would be expected, the relative importances of most of the [C4H8O]+˙ isomerizations seem to be inversely related to the activation energies for those processes. Some parallels between the isomerizations of [C4H8O]+˙ ions and those of related ions are pointed out.  相似文献   

7.
The title compounds, Cu(L1)(C4H8NHO) and Ni(L2)(C4H8NHO) (H2L1 = 5-bro- mosalicylaldehyde-p-nitrobenzoylhydrazone, H2L2 = 5-bromosalicylaldehyde-p-hydroxybenzo- ylhydrazone), have been obtained and characterized by single-crystal X-ray diffraction. Complex 1 belongs to the triclinic system, space group P1 with a = 8.6960(2), b = 9.957(2), c = 11.878(2) , α = 73.36(3), β = 78.25(3), γ = 82.64(3)o, V = 962.1(3) 3, Mr = 512.81, Z = 2, F(000) = 514, Dc = 1.770 g/cm3, μ(MoKα) = 3.251, R = 0.0337 and wR = 0.0846. Complex 2 is of monoclinic, space group P21/c with a = 13.313(2), b = 8.2096(1), c = 21.890(3) , β = 125.737(3)o, V = 1941.9(4) 3, Mr = 478.97, Z = 4, F(000) = 968, Dc = 1.638 g/cm3, μ(MoKα) = 3.085, R = 0.0356 and wR = 0.0817. The ligands form a satisfactory N2O2 square plane around the metal centers in two compounds. Different patterns of hydrogen bonds are observed owing to the presence of different substituents on aromatic ring of the acylhydrazone Schiff bases. In complex 1, square-planar copper(II) complexes are linked by intermolecular hydrogen bonds leading to zigzag infinite chains. In complex 2, the metal complexes are linked via hydrogen bonds to form corrugated sheets in a staggered fashion; 3D channels along the b axis are constructed through other non-covalent interactions between the neighboring layers.  相似文献   

8.
合成了四个三核簇合物[A]2[MS4(CuCN)2](1A=Et4N,M=Mo;2A=PPh4,M=W;3A=Et4N,M=W;4A=PPh4,M=Mo),测定了[Et4N]2[MoS4(CuCN)2]*H2O(1*H2O)和[PPh4]2[WS4(CuCN)2]*0.5DMF*H2O(2*0.5DMF*H2O)的晶体结构.1和2的簇阴离子[MS4(CuCN)2]2-(M=Mo,W)均具有一个双齿配体MS42-和两个CuCN形成的近似D2d对称性结构.  相似文献   

9.
The appearance energies for the [C7H7]+ and [C8H9]+ fragment ions produced in the fragmentation of the C-1? C-4 monosubstituted alkyl benzenes have been measured by photon impact. The mean heat of formation calculated for [C7H7]+ is 205.3 ± 1.9 kcal mol?1 which is consistent with a threshold tropylium structure. For [C8H9]+ the mean heat of formation is calculated to be 199.2 ± 1.3 kcal mol?1 which can be equated with either a methyl tropylium or α-phenylethyl structure at threshold. Some evidence is provided for the existence of the α-phenylethyl ion.  相似文献   

10.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

11.
Zhu  Dunru  Song  You  Liu  Yongjiang  Xu  Yan  Zhang  Yong  You  Xiaozeng  Sundara Raj  S. Shanmuga  Fun  Hoong-Kun 《Transition Metal Chemistry》2000,25(5):589-593
The novel cobalt(II) and nickel(II) complexes with 4-(p-methoxyphenyl)-3,5-bis(pyridin-2-yl)-1,2,4-triazole (MOBPT) have been synthesized and their molecular structures determined by X-ray analysis, i.r. and by ESI-MS spectroscopy. The metal atom is in a distorted octahedral environment. Two bidentate chelating ligands (MOBPT) coordinate to the metal center equatorially and two water molecules coordinate axially. Each MOBPT entity coordinates via one triazole nitrogen and one pyridine nitrogen atom. Magnetic measurements show that the complexes are high-spin species in the 75–300 K range.  相似文献   

12.
The tetrabutylammonium gamma-dodecatungstosilicate has been crystallized in a 6/1 acetonitrile/water solvent. An X-ray single-crystal analysis was carried out on [N(C4H9)4]4-gamma-[SiW12O40] which crystallizes in the orthorhombic system, space group P2(1)2(1)2(1), with a = 19.0881(3) A, b = 21.4435(3) A, c = 26.0799(1) A, V = 10674.9(2) A3, Z = 4, and rho(calcd) = 2.392 g/cm3. The idealized C2v arrangement of the anion results from the rotation of 60 degrees of two trigonal [W3O13] groups in the Keggin anion. Taking as reference the geometrical characteristics of the Keggin anion, it appears that the bond lengths and bonds angles within the four [W3O13] groups are not significantly modified while the mu-oxo junctions between the two rotated groups and those between the two unrotated groups involve more acute and opened W-O-W angles, respectively. The syntheses and 183W NMR characterizations of the mixed gamma-[SiW10Mo2O40]n- compounds corresponding to the oxidized (Mo(VI); n = 4) and to the two electron-reduced (Mo(V); n = 6) anions are reported. Structural analysis by 183W NMR has proved unambiguously that the C2v structure of the gamma-[SiW10O36]8- subunit is retained in both the compounds. The electronic behavior of the series gamma-[SiW10M2E2O36]6- (M = Mo or W; E = O or S) is examined, compared and related to 183W NMR data.  相似文献   

13.
14.
Imino(triphenyl)phosphorane, Ph3P=NH (1), reacts with nitrile complexes of Pt(IV) to generate hydrolytically sensitive [PtCl4{NH=C(R)N=PPh3}2](R=Me 2a, Et 2b, Ph 2c), and with the Pt(II) complex [PtCl2(EtCN)2] to give [PtCl2(EtCN){NH=C(Et)N=PPh3}](3) and [PtCl2{NH=C(Et)N=PPh3}2](4); X-ray crystallography performed upon (2b) and (3) confirms the presence of an imine/nitrile addition ligand bound by the terminal nitrogen.  相似文献   

15.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

16.
Attempts to prepare heterobimetallic complexes in which 3d and uranium magnetic ions are associated by means of the Schiff bases H(2)L(i) derived from 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde were unsuccessful because of ligand transfer reactions between [ML(i)] (M=Co, Ni, Cu) and UCl(4) that led to the mononuclear Schiff base complexes of uranium [UL(i)Cl(2)]. The crystal structure of [UL(3)Cl(2)(py)(2)] [L(3)=N,N'-bis(3-methoxysalicylidene)-ethylenediamine; py=pyridine] was determined. The hexadentate Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine (L) was useful for the synthesis of novel trinuclear complexes of the general formula [[ML(py)](2)U] (M=Co, Ni, Zn) or [[CuL(py)]M'[CuL]] (M'=U, Th, Zr) by reaction of [M(H(2)L)] with [M'(acac)(4)] (acac=MeCOCHCOMe). The crystal structures of the Co(2)U, Ni(2)U, Zn(2)U, Cu(2)U, and Cu(2)Th complexes show that the two ML fragments are orthogonal, being linked to the central actinide ion by the two pairs of oxygen atoms of the Schiff base ligand. In each compound, the UO(8) core exhibits the same dodecahedral geometry, and the three metals are linear. The magnetic study indicated that the two Cu(2+) ions are not coupled in the Cu(2)Zr and Cu(2)Th compounds. The magnetic behavior of the Co(2)U, Ni(2)U, and Cu(2)U complexes was compared with that of the Zn(2)U derivative, in which the paramagnetic 3d ion was replaced with the diamagnetic Zn(2+) ion. A weak antiferromagnetic coupling was observed between the Ni(2+) and the U(4+) ions, while a ferromagnetic interaction was revealed between the Cu(2+) and U(4+) ions.  相似文献   

17.
The MIKE spectra of amines RCH2NH2 containing more than five carbon atoms exhibit m/z 44 and m/z 58 peaks. The structures of these [C2H6N]+ and [C3H8N]+ ions have been established by collisional activation spectra. The results are in agreement with the fragmentation mechanisms previously proposed.  相似文献   

18.
《Polyhedron》2003,22(25-26):3307-3313
The [ReCl22-N2COPh–N,O)(PPh3)2] complex reacts with pyridine and pyrazole to give [ReCl2(N2COPh)(py)(PPh3)2] and [ReCl2(N2COPh)(C3N2H4)(PPh3)2], respectively. Two monoclinic polymers of [ReCl2(N2COPh)(C3N2H4)(PPh3)2] and [ReCl2(N2COPh)(py)(PPh3)2] have been characterized by IR, UV–Vis, 1H NMR, magnetic measurements and X-ray structure.  相似文献   

19.
A strong secondary isotope effect is observed in the preferred loss of methyl vs. trideutero-methyl from the molecular ions of appropriately labelled 4-t-butylpyridine and t-butylbenzene decomposing in the first and second field free regions of a double focusing mass spectrometer. This has been rationalised by invoking the theory of radiationless transitions2, which can account for the higher population of activated states responsible for loss of methyl vs. that for trideuteromethyl. 13C-Labelling at the central carbon atom of the t-butyl group indicates that the [M – methyl]+ ions, decomposing further by elimination of ethylene, cannot be represented exclusively by a pyridylated (or phenylated) cyclopropane ion if present at all. It is concluded that ions with structures generated by 1,2-hydrogen-, 1,2-pyridyl- (or 1,2-phenyl-) and 1,2-methyl shifts must also play a role. D-labelling further shows an extensive randomisation of side-chain hydrogen atoms in the [M-methyl]+ ions of 4-t-butylbenzene; in this case, however, the expelled ethylene also contains ring hydrogen atoms (≤2). Presumably this is caused by exchange between the side-chain and ortho-hydrogen atoms in the initially generated phenyldimethylcarbinyl carbenium ion.  相似文献   

20.
The photodissociation of [C4H5N]+˙ ions generated by ionization of pyrrole (1), allyl cyanide (2), crotonitrile (3), cyclopropyl cyanide (4) and methacrylonitrile (5) has been studied using ion beam techniques. At least four different stable ion structures have been distinguished, which is in contrast to earlier CAD studies. In addition it has been shown that [C2H3N]+˙ fragment ions formed by dissociative ionization of the same precursors have structures which are distinct from that of ionized acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号