首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.  相似文献   

2.
The surface dependence of CO adsorption on Ceria   总被引:1,自引:0,他引:1  
An understanding of the interaction between ceria and environmentally sensitive molecules is vital for developing its role in catalysis. We present the structure and energetics of CO adsorbed onto stoichiometric (111), (110), and (100) surfaces of ceria from first principles density functional theory corrected for on-site Coulomb interactions, DFT+U. DFT+U is applied because it can describe consistently the properties of both the stoichiometric and reduced surfaces. Our major finding is that the interaction is strongly surface dependent, consistent with experiment. Upon interaction of CO with the (111) surface, weak binding is found, with little perturbation to the surface or the molecule. For the (110) and (100) surfaces, the most stable adsorbate is that in which the CO molecule bridges two oxygen atoms and pulls these atoms out of their lattice sites, with formation of a (CO(3)) species. This results in a strong modification to the surface structure, consistent with that resulting from mild reduction. The electronic structure also demonstrates reduction of the ceria surface and consequent localization of charge on cerium atoms neighboring the vacancy sites. The surface-bound (CO(3)) species is identified as a carbonate, (CO(3))(2-) group, which is formed along with two reduced surface Ce(III) ions, in good agreement with experimental infrared data. These results provide a detailed investigation of the interactions involved in the adsorption of CO on ceria surfaces, allowing a rationalization of experimental findings and demonstrate further the applicability of the DFT+U approach to the study of systems in which reduced ceria surfaces play a role.  相似文献   

3.
The thermodynamic, structural and electronic properties of Cu-CeO(2) (ceria) surfaces and interfaces are investigated by means of density functional theory (DFT+U) calculations. We focus on model systems consisting of Cu atoms (i) supported by stoichiometric and reduced CeO(2) (111) surfaces, (ii) dispersed as substitutional solid solution at the same surface, as well as on (iii) the extended Cu(111)/CeO(2)(111) interface. Extensive charge reorganization at the metal-oxide contact is predicted for ceria-supported Cu adatoms and nanoparticles, leading to Cu oxidation, ceria reduction, and interfacial Ce(3+) ions. The calculated thermodynamics predict that Cu adatoms on stoichiometric surfaces are more stable than on O vacancies of reduced surfaces at all temperatures and pressures relevant for catalytic applications, even in extremely reducing chemical environments. This suggests that supported Cu nanoparticles do not nucleate at surface O vacancies of the oxide, at variance with many other metal/ceria systems. In oxidizing conditions, the solid solutions are shown to be more stable than the supported systems. Substitutional Cu ions form characteristic CuO(4) units. These promote an easy and reversible O release without the reduction of Ce ions. The study of the extended CeO(2)(111)/Cu(111) interface predicts the full reduction of the interfacial ceria trilayer. Cu nanoparticles supported by ceria are proposed to lie above a subsurface layer of Ce(3+) ions that extends up to the perimeter of the metal-oxide interface.  相似文献   

4.
Results from first-principles calculations present a rather clear picture of the interaction of SO(2) with unreduced and partially reduced (111) and (110) surfaces of ceria. The Ce(3+)∕Ce(4+) redox couple, together with many oxidation states of S, give rise to a multitude of SO(x) species, with oxidation states from +III to +VI. SO(2) adsorbs either as a molecule or attaches via its S-atom to one or two surface oxygens to form sulfite (SO(3)(2-)) and sulfate (SO(4)(2-)) species, forming new S-O bonds but never any S-Ce bonds. Molecular adsorption is found on the (111) surface. SO(3)(2-) structures are found on both the (111) and (110) surfaces of both stoichiometric and partially reduced ceria. SO(4)(2-) structures are observed on the (110) surface together with the formation of two reduced Ce(3+) surface cations. SO(2) can also partially heal the ceria oxygen vacancies by weakening a S-O bond, when significant electron transfer from the surface (Ce4f) into the lowest unoccupied molecular orbital of the SO(2) adsorbate takes place and oxidizes the surface Ce(3+) cations. Furthermore, we propose a mechanism that could lead to monodentate sulfate formation at the (111) surface.  相似文献   

5.
Electronic and atomistic structures of clean and reduced ceria surfaces   总被引:1,自引:0,他引:1  
The atomistic and electronic structures of oxygen vacancies on the (111) and (110) surfaces of ceria are studied by means of periodic density functional calculations. The removal of a neutral surface oxygen atom leaves back two excess electrons that are shown to localize on two cerium ions neighboring the defect. The resulting change of valency of these Ce ions (Ce4+ --> Ce3+) originates from populating tightly bound Ce 4f states and is modeled by adding a Hubbard U term to the traditional energy functionals. The calculated atomistic and electronic structures of the defect-free and reduced surfaces are shown to agree with spectroscopic and microscopic measurements. The preferential defect segregation and the different chemical reactivity of the (111) and (110) surfaces are discussed in terms of energetics and features in the electronic structure.  相似文献   

6.
水分子和二氧化铈(111)表面相互作用的DFT+U研究   总被引:1,自引:0,他引:1  
采用引入Hubbard参数U修正的密度泛函理论(DFT+U)方法, 对水分子在二氧化铈(111)表面的吸附作用进行了研究. 计算结果表明: 在氧化的二氧化铈(111)表面, 水分子以单氢键构型吸附在二氧化铈表面, 但是不能自发解离; 在还原的二氧化铈(111)表面, 水分子或化学吸附在衬底上, 或自发解离成表面羟基结构. 与氢气在氧化的二氧化铈(111)表面上物理吸附体系的总能相比, 羟基化表面构型是能量更低的构型, 所以羟基解离形成氢气, 从而使表面被氧化的过程需要有外部条件, 反应不能自发进行. 因此, 水分子在还原的二氧化铈(111)表面有两个可能的状态, 即无氢键结构的化学吸附和表面羟基结构的解离吸附. 在一定的外部条件下, 表面羟基结构进一步解离形成氢气, 并使还原的二氧化铈(111)表面得以氧化.  相似文献   

7.
Reduction of NO2 on ceria surfaces   总被引:1,自引:0,他引:1  
  相似文献   

8.
The interaction of Pt particles with the regular CeO(2)(111) surface has been studied using Pt(8) clusters as representative examples. The atomic and electronic structure of the resulting model systems have been obtained through periodic spin-polarized density functional calculations using the PW91 exchange-correlation potential corrected with the inclusion of a Hubbard U parameter. The focus is on the effect of the metal-support interaction on the surface reducibility of ceria. Several initial geometries and orientations of Pt(8) with respect to the ceria substrate have been explored. It has been found that deposition of Pt(8) over the ceria surface results in spontaneous oxidation of the supported particle with a concomitant reduction of up to two Ce(4+) cations to Ce(3+). Oxygen vacancy formation on the CeO(2)(111) surface and oxygen spillover to the adsorbed particle have also been considered. The presence of the supported Pt(8) particles has a rather small effect (~0.2 eV) on the O vacancy formation energy. However, it is predicted that the spillover of atomic oxygen from the substrate to the metal particle greatly facilitates the formation of oxygen vacancies: the calculated energy required to transfer an oxygen atom from the CeO(2)(111) surface to the supported Pt(8) particle is only 1.00 eV, i.e. considerably smaller than 2.25 eV necessary to form an oxygen vacancy on the bare regular ceria surface. This strongly suggests that the propensity of ceria systems to store and release oxygen is directly affected by the presence of supported Pt particles.  相似文献   

9.
Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface.  相似文献   

10.
Low-temperature scanning tunneling microscopy and spectroscopy have been employed to analyze the local electronic structure of the (111) surface of a ceria thin film grown on Ru(0001). On pristine, defect-free oxide terraces, the empty 4f states of Ce(4+) ions appear as the only spectral feature inside the 6 eV oxide band gap. In contrast, occupied states are detected between -1.0 and -1.5 eV below E(Fermi) in conductance spectra of different point and line defects, such as surface oxygen vacancies, grain boundaries and step edges. They are assigned to partially filled 4f states localized at the Ce(3+) ions. The presence of excess electrons indicates the oxygen-deficient nature of the direct oxide environment. The f state spectroscopy with the STM allows us to probe the spatial distribution of Ce(3+) ions in the ceria surface, providing unique insight into the local reduction state of this chemically important material system.  相似文献   

11.
Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site. Prior to DFT optimization, small distortions in selected Ce-O distances were imposed to explore the energetics associated with reduction of Ce(4+) to Ce(3+) due to charge transfer to Ce during M adsorption. Charge redistribution is confirmed with spin density isosurfaces and site projected density of states. We demonstrate that Cu and Au atoms can be oxidized to Cu(2+) and Au(2+), although the adsorption energy, E(ads), of Au(2+) is less favorable and, unlike Cu(2+), it has not been experimentally observed. Oxidation of Ag always results in Ag(+). For M adsorption at an O bridge site, E(ads)(2NN) > E(ads)(3NN) > E(ads)(1NN) where NN denotes the nearest neighbor Ce(3+) site relative to M. Alternatively, for M adsorption at a Ce bridge site, E(ads)(3NN) > E(ads)(2NN) > E(ads)(1NN). The adsorption behavior of M on CeO(2) (110) is compared with M adsorption on CeO(2)(111).  相似文献   

12.
The interaction of water molecules with the Cu-CeO(2)(111) catalyst (Cu/CeO(2) and Cu(0.08)Ce(0.92)O(2)) is studied systematically by using the DFT+U method. Although both molecular and dissociative adsorption states of water are observed on all the considered Cu-CeO(2)(111) systems, the dissociation is preferable thermodynamically. Furthermore, the dissociation of water molecule relates to the geometric structure (e.g. whether or not there are oxygen vacancies; whether or not the reduced substrate retains a fluorite structure) and the electronic structure (e.g. whether or not there is reduced cerium, Ce(3+)) of the substrate.In addition, the adsorption of water molecules induces variations of the electronic structure of the substrate, especially for Cu/CeO(2-x)(111)-B (a Cu atom adsorbed symmetrically above the vacancy of the reduced ceria) and highly reduced Cu(0.08)Ce(0.92)O(2)(111), i.e. the Cu(0.08)Ce(0.92)O(2-x)(111)-h. The variations of electronic structure promote the dissociation of water for the highly reduced system Cu(0.08)Ce(0.92)O(2-x)(111)-h. More importantly, the improvement of WGS reaction by Cu-ceria is expected to be by the associative route through different intermediates.  相似文献   

13.
The electronic properties of Pt nanoparticles deposited on CeO(2)(111) and CeO(x)/TiO(2)(110) model catalysts have been examined using valence photoemission experiments and density functional theory (DFT) calculations. The valence photoemission and DFT results point to a new type of "strong metal-support interaction" that produces large electronic perturbations for small Pt particles in contact with ceria and significantly enhances the ability of the admetal to dissociate the O-H bonds in water. When going from Pt(111) to Pt(8)/CeO(2)(111), the dissociation of water becomes a very exothermic process. The ceria-supported Pt(8) appears as a fluxional system that can change geometry and charge distribution to accommodate adsorbates better. In comparison with other water-gas shift (WGS) catalysts [Cu(111), Pt(111), Cu/CeO(2)(111), and Au/CeO(2)(111)], the Pt/CeO(2)(111) surface has the unique property that the admetal is able to dissociate water in an efficient way. Furthermore, for the codeposition of Pt and CeO(x) nanoparticles on TiO(2)(110), we have found a transfer of O from the ceria to Pt that opens new paths for the WGS process and makes the mixed-metal oxide an extremely active catalyst for the production of hydrogen.  相似文献   

14.
The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate.  相似文献   

15.
In this paper, we investigated the primary reduction and oxygen replenishing processes over Mn substitutionally doped CeO(2)(111) surfaces by density functional theory with the on-site Coulomb correction (DFT + U). The results indicated that Mn doping could make the surface much more reducible and the adsorbed O(2) could be effectively activated to form superoxo (O(2)(-)) and/or peroxo species (O(2)(2-)). The Mn doping induced the Mn 3d-O 2p gap state instead of Ce 4f acting as an electrons acceptor and donor during the first oxygen vacancy formation and O(2) replenishing, which helped to lower the formation energy of the first and second oxygen vacancies to -0.46 eV and 1.40 eV, respectively. In contrast, the formation energy of a single oxygen vacancy in the pure ceria surface was 2.08 eV and only peroxo species were identified as the O(2) molecule adsorbed. Our work provides a theoretical and electronic insight into the catalytic redox processes of Mn doped ceria surfaces, which may help to understand the enhanced catalytic performances of MnO(x)-CeO(2) oxides, as reported in previous experimental works.  相似文献   

16.
The growth of ceria (CeO2) films by oxidation of evaporated Ce metal on Si(111) and on CaF2(111) epilayers on Si(111) is compared. By use of XPS, UPS, and LEED, it has been demonstrated that the application of a CaF2 buffer layer between the ceria and Si substrate prevents the formation of an amorphous oxidized Si layer at the interface and permits the growth of a well-defined epitaxial ceria layer of (111) surface orientation. The thermal stability of the CeO2/CaF2/Si(111) interface structure is limited by the solid-state reaction between CaF2 and ceria. This leads to gradual migration of fluorine into the oxide at elevated temperatures to give a solid-state solution of fluorine in the partially reduced oxide. An analysis of the composition observed after extensive annealing in a vacuum suggests that, with initial layers of CaF2 and CeO2 of similar thickness, the ultimate product may be CeOF. The onset of this solid-state reaction can, however, be significantly delayed by annealing under an oxygen atmosphere.  相似文献   

17.
利用扫描隧道显微镜、X射线光电子能谱和同步辐射光电子能谱研究了CeO2(111),部分还原的CeO2-x(111) (0<x<0.5)以及Ca掺杂的CeO2模型催化剂的形貌、电子结构以及它们与CO2分子间的相互作用。CeO2(111)和部分还原的CeO2-x(111)薄膜外延生长于Cu(111)单晶表面。不同Ca掺杂的CeO2薄膜是通过在CeO2(111)薄膜表面室温物理沉积金属Ca及随后真空退火到不同温度而得到的。不同的制备过程导致样品具有不同的表面组成,化学态和结构。CO2吸附到CeO2和部分还原的CeO2-x表面后导致表面羧酸盐的形成。此外,相比于CeO2表面,羧酸盐物种更易在部分还原的CeO2-x表面生成,而且更加稳定。而在Ca掺杂的氧化铈薄膜表面,Ca2+离子的存在有利于CO2的吸附,且探测到碳酸盐物种的形成。  相似文献   

18.
A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moire? structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.  相似文献   

19.
Density functional studies of model cerium oxide nanoparticles   总被引:2,自引:0,他引:2  
Density functional plane-wave calculations have been performed to investigate a series of ceria nanoparticles (CeO2-x)(n), n Ce3+ reduction have been accounted for through the use of an effective on-site Coulomb repulsive interaction within the so-called DFT+U approach. Twelve nanoparticles of up to 2 nm in diameter and of both cuboctahedral and octahedral forms are chosen as representative model systems. Energetic and structural effects of oxygen vacancy formation in these nanoparticles are discussed with respect to those in the bulk and on extended surfaces. We show that the average interatomic distances of the nanoparticles are most significantly affected by the creation of oxygen vacancies. The formation energies of non-stoichiometric nanoparticles (CeO2-x)(n) are found to scale linearly with the average coordination number of Ce atoms; where x < 0 species, containing partially reduced O atoms, are less stable. The stability of octahedral ceria particles at small sizes, and the predicted strong propensity of Ce cations to acquire a reduced state at lower coordinated sites, is supported by interatomic potential-based global optimisations probing the low energy isomers of the Ce19O32 nanoparticle.  相似文献   

20.
The early stages of ceria growth on Rh(111) at high temperature have been investigated by low-energy electron microscopy and photoemission electron microscopy. Ceria was deposited by reactive Ce deposition at substrate temperatures between 700°C and 900°C in an oxygen ambient of 5 × 10−7 Torr. At 700°C, we observe a high nucleation density of 100-nm-sized islands. With elevated temperature, the average island size increases, and the nucleation density decreases. Triangularly shaped islands nucleate preferentially at step edges, with seemingly abrupt interfaces between Ce and Rh. At 900°C, the island edges are still straight, but during growth the islands lose their triangular form. Instead, growth along the substrate step edges becomes favorable, leading to a maze-like morphology. Atomic force microscopy reveals islands of 0.3 to 0.6-nm height, consistent with ceria islands formed by one or two trilayers (O―Ce―O) of ceria. Moreover, the second layer of the islands is also triangularly shaped, with lateral dimensions of 50 nm and similar step heights. IV-LEEM analysis leads to the conclusion that the rhodium surface is covered by a layer of reduced cerium oxide, which is partially overgrown by smaller islands of CeO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号