首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of new C2-symmetric chiral aza crown ether macrocycles 14 have been synthesized from (S)-3-aryloxy-1,2-propanediol and (S)-1,2-propanediol for the enantiomeric recognition of amino acid ester derivatives. These new macrocycles have been shown to be strong complexing agents for primary organic ammonium salts (with K up to 176.93 M?1 and ΔG° up to 12.81 kJ mol?1) by 1H NMR titration. These macrocyclic host exhibited enantioselective bonding toward the d-enantiomer of phenylalanine methyl ester hydrochloride with KD/KL up to 6.87 in CDCl3 with 0.25% CD3OD.  相似文献   

2.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

3.
N. Xaba  D. Jaganyi 《Polyhedron》2009,28(6):1145-1149
Hydroboration reactions of 4-octene with HBBr2 · SMe2, HBCl2 · SMe2 and H2BBr · SMe2 in CH2Cl2 were studied as function of concentration and temperature and compared with those of 1-octene. On average, hydroboration with dihaloborane proceeded 16 times slower for 4-octene than for 1-octene. In the case of the reactions with the monohaloborane, this factor is halved. This can be explained by the difference in the relative rates of dissociates of Me2S from the dihaloborane and a monohaloborane complex, respectively. The reactions involving H2BBr · SMe2 also exhibited a k?2 value, an indication of the presence of a parallel reaction, most likely a rearrangement process facilitating isomerization by way of a π-complex. The moderate ΔH values accompanied by small ΔS values (94 ± 4 kJ mol?1, ?3 ± 13 J K?1 mol?1 for HBBr2 · SMe2; 93 ± 1 kJ mol?1, ?17 ± 4 J K?1 mol?1 for HBCl2 · SMe2 and in the case of H2BBr · SMe2, 90 ± 13 kJ mol?1, +12 ± 44 J K?1 mol?1 and 83 ± 13 kJ mol?1, ?24 ± 45 J K?1 mol?1, respectively, for the k2 and k?2 processes) imply a process that is dissociatively dominated, with the overall mode of activation being interchange dissociative (Id).  相似文献   

4.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

5.
The solubility measurements of sodium dicarboxylate salts; sodium oxalate, malonate, succinate, glutarate, and adipate in water at temperatures from (278.15 to 358.15 K) were determined. The molar enthalpies of solution at T = 298.15 K were derived: ΔsolHm (m = 2.11 mol · kg?1) = 13.86 kJ · mol?1 for sodium oxalate; ΔsolHm (m = 3.99 mol · kg?1) = 14.83 kJ · mol?1 for sodium malonate; ΔsolHm (m = 2.45 mol · kg?1) = 14.83 kJ · mol?1 for sodium succinate; ΔsolHm (m = 4.53 mol · kg?1) = 16.55 kJ · mol?1 for sodium glutarate, and ΔsolHm (m = 3.52 mol · kg?1) = 15.70 kJ · mol?1 for sodium adipate. The solubility value exhibits a prominent odd–even effect with respect to terms with odd number of sodium dicarboxylate carbon numbers showing much higher solubility. This odd–even effect may have implications for the relative abundance of these compounds in industrial applications and also in the atmospheric aerosols.  相似文献   

6.
《Tetrahedron: Asymmetry》2007,18(7):900-905
Novel calix[4]arene Schiff bases bearing chiral substituents both on the upper and the lower rims have been developed. These chiral receptors exhibit good chiral recognition ability towards α-amino acid ester hydrochlorides (up to KD/KL = 4.36, ΔΔG0 =  3.65 kJ mol−1) in CHCl3. The molecular recognition abilities and enantioselectivities for guests are also discussed from a thermodynamic point of view.  相似文献   

7.
Thermodynamic properties of Mg(NH2)2 and LiNH2 were investigated by measurements of NH3 pressure-composition isotherms (PCI). Van’t Hoff plot of plateau pressures of PCI for decomposition of Mg(NH2)2 indicated the standard enthalpy and entropy change of the reactions were ΔH° = (120 ± 11) kJ · mol?1 (per unit amount of NH3) and ΔS° = (182 ± 19) J · mol?1 · K?1 for the reaction: Mg(NH2)2  MgNH + NH3, and ΔH° = 112 kJ · mol?1 and ΔSo = 157 J · mol?1 · K?1 for the reaction: MgNH  (1/3)Mg3N2 + (1/3)NH3. PCI measurements for formation of LiNH2 were carried out, and temperature dependence of plateau pressures indicated ΔH° = (?108 ± 15) kJ · mol?1 and ΔS° = (?143 ± 25) J · mol?1 · K?1 for the reaction: Li2NH + NH3  2LiNH2.  相似文献   

8.
The mobility of uranium under oxidizing conditions can only be modeled if the thermodynamic stabilities of the secondary uranyl minerals are known. Toward this end, we synthesized metaschoepite (UO3(H2O)2), becquerelite (Ca(UO2)6O4(OH)6(H2O)8), compreignacite (K2(UO2)6O4(OH)6(H2O)7), sodium compreignacite (Na2(UO2)6O4(OH)6(H2O)7), and clarkeite (Na(UO2)O(OH)) and performed solubility measurements from both undersaturation and supersaturation under controlled-pH conditions. The solubility measurements rigorously constrain the values of the solubility products for these synthetic phases, and consequently the standard-state Gibbs free energies of formation of the phases. The calculated lg solubility product values (lg Ksp), with associated 1σ uncertainties, for metaschoepite, becquerelite, compreignacite, sodium compreignacite, and clarkeite are (5.6 ?0.2/+0.1), (40.5 ?1.4/+0.2), (35.8 ?0.5/+0.3), (39.4 ?1.1/+0.7), and (9.4 ?0.9/+0.6), respectively. The standard-state Gibbs free energies of formation, with their 2σ uncertainties, for these same phases are (?1632.2 ± 7.4) kJ · mol?1, (?10305.6 ± 26.5) kJ · mol?1, (?10107.3 ± 21.8) kJ · mol?1, (?10045.6 ±24.5) kJ · mol?1, and (?1635.1 ± 23.4) kJ · mol?1, respectively. Combining our data with previously measured standard-state enthalpies of formation for metaschoepite, becquerelite, sodium compreignacite, and clarkeite yields calculated standard-state entropies of formation, with associated 2σ uncertainties, of (?532.5 ± 8.1) J · mol?1 · K?1, (?3634.5 ± 29.7) J · mol?1 · K?1, ( ?2987.6 ± 28.5) J · mol?1 · K?1, and (?300.5 ± 23.9) J · mol?1 · K?1, respectively. The measurements and associated calculated thermodynamic properties from this study not only describe the stability and solubility at T = 298 K, but also can be used in predictions of uranium mobility through extrapolation of these properties to temperatures and pressures of geologic and environmental interest.  相似文献   

9.
Thermodynamic properties of the high-stability intermetallic compound nickel aluminide, NiAl, have been determined from mass-spectrometric, weight-loss effusion, and calorimetric measurements, using samples from a single preparation with a composition determined to be Ni0.986Al1.014. Per mole of NiAl molecules, the specific heat capacity at room temperature of 298 K is 48.54 J · K?1 · mol?1, with a linear temperature dependence of +0.0104 J · K?2 · mol?1. At the same temperature, the enthalpy of formation is ?133.7 kJ · mol?1, the entropy is about 53.8 J · K?1 · mol?1 and the enthalpy difference between room temperature and absolute zero is 7.97 kJ · mol?1. The Gibbs free-energy is ?130.2 kJ · mol?1 at T = 298 K, with a linear temperature dependence of +5.04 J · K?1 · mol?1. The Debye temperature is 452 K, while the electronic density-of-states at the Fermi-level is about 0.29 states per eV-atom. The NiAl+ ions were observed in the high-temperature mass spectra. Pressures for the gas at these temperatures were estimated and used with the results of quantum-mechanical calculations of total energy, specific heat, and entropy to calculate free-energy functions for the gas. These and additional results are compared with other measurements and discussed in terms of current theories of the electronic and structural properties of the compound.  相似文献   

10.
The adsorption of uranium (VI) from aqueous solutions onto natural sepiolite has been studied using a batch adsorber. The parameters that affect the uranium (VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated and optimized conditions determined. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of sepiolite and experimental results showed this to be 34.61 mg · g?1. The experimental results were correlated reasonably well by the Langmuir adsorption isotherm and the isotherm parameters (Qo and b) were calculated. Thermodynamic parameters (ΔH° = ?126.64 kJ · mol?1, ΔS° = ?353.84 J · mol?1 · K?1, ΔG° = ?21.14 kJ · mol?1) showed the exothermic heat of adsorption and the feasibility of the process. The results suggested that sepiolite was suitable as sorbent material for recovery and adsorption of uranium (VI) ions from aqueous solutions.  相似文献   

11.
《Tetrahedron: Asymmetry》2007,18(13):1540-1547
Syntheses of trans-1,2-di-tert-butylpyrazolidine 1, d,l- and semi-meso-1,2-diisopropyl-3,5-dimethylpyrazolidines, 2a and 2b, respectively, have been developed. Activation parameters of the nitrogen inversion in 1G = 123 kJ mol−1 at 110 °C, ΔH = 114 kJ mol−1, ΔS = −15 J K−1 mol−1) have been determined. The steric veto of the nitrogen inversion in 2a has been confirmed. Chemical transformations of 1 have been studied, and the crystal structures of 2a·picrate and 2b·HCl determined.  相似文献   

12.
Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H2O and H2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol?1 (M?1). These interactions are exothermic and have relatively large standard enthalpy and entropy changes (ΔH values ranged from ?15.58 to ?3.10 kJ mol?1; ΔS ranged from 26.81 to ?3.25 J K?1 mol?1). The solid CT-complexes have been synthesized and characterized by IR, NMR, mass spectrometry and thermal analysis. The photometric titration curves and other spectrometric data for the reactions indicated that the data obtained refer to the formation of 1:1 charge-transfer complex of [(4-nCat) (NHEDAP)] and 1:2 charge-transfer complexes of other amino alcohols [(4-nCat) (amino alcohol)2]. The effect of alkali and alkaline earth metals on increasing the equilibrium constant of the CT-complexation was also investigated.  相似文献   

13.
Interaction of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and isopropanol in the presence of equimolar quantities of guanidine thiocyanate (GndSCN) with bovine α-lactalbumin (α-LA) has been investigated by using a combination of isothermal titration calorimetry, circular dichroism, fluorescence, and ultra-violet spectroscopies at in 20 · 10?3 mol · dm?3 phosphate buffer pH 7.0. All the thermal unfolding transitions, in the presence of both the (alcohol + salt) mixtures were found to be reversible as judged by the same values of absorbance observed at different temperatures during cooling after the completion of thermal unfolding. In the presence of the 0.25 mol · dm?3 (HFIP + GndSCN) equimolar mixture and 0.85 mol · dm?3 (isopropanol + GndSCN) equimolar mixture, α-lactalbumin was observed to be in the partially folded state with significant loss of native tertiary structure. Intrinsic fluorescence results, acrylamide and potassium iodide quenching, 8-anilino-1-naphthalenesulfonic acid (ANS) binding, and energy transfer results also corroborate the presence of partially folded states of α-lactalbumin. Apart from the generation of the partially folded states, it was also observed that destabilizing action of GndSCN is reduced in the presence of isopropanol compared to that in HFIP. Isothermal titration calorimetry has been used to characterize the energetics of ANS binding to the partially folded states of the protein. ITC results indicate that ANS binds to these partially folded states at pH 7.0 due to the presence of two sequentially binding sites on the protein under the solvent conditions employed. For example, ANS binds to the 0.25 mol · dm?3 (HFIP + GndSCN) induced partially folded state with affinity constants K1 = (858 ± 220), K2 = (1.12 ± 0.25) · 103; enthalpies of binding ΔH1 = (4.4 ± 1.0) kJ · mol?1, ΔH2 = (2.1 ± 0.2) kJ · mol?1; and entropies of binding ΔS1 = 70 J · K?1 · mol?1 and ΔS2 = 65 J · K?1 · mol?1, respectively at these two sequential binding sites. In light of the fluorescence results, possible binding sites where ANS can bind to the protein have also been suggested.  相似文献   

14.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

15.
A visible spectrophotometric method has been developed for the reaction kinetics of o-phenylenediamine in the presence of gold (III). The method is based on the measurement of the absorbance of the reaction o-phenylenediamine and gold (III). Optimum conditions for the reaction were established as pH 6 at λ = 466 nm.When the reaction kinetic of o-phenylenediamine by gold (III) was investigated, it was observed that the following rate formula was found as ln (A/A0) = kt, according to absorbance measurements. The activation energy Ea and Arrhenius constant A were calculated from the Arrhenius equation as 1.009 kJ · mol−1 and 3.46 · 10−2 s−1, respectively. Other activation thermodynamic parameters, entropy, ΔS (J · mol−1 · K−1), enthalpy, ΔH (kJ · mol−1), Gibbs free energy, ΔG (kJ · mol−1) and equilibrium constant, Ke were calculated at T = (283.2, 303.2, 323.2, and 343.2) K. The study was exothermic due to the decrease of entropy and was a non-spontaneous process during activation.  相似文献   

16.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

17.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

18.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

19.
The interaction between imidacloprid (IMI) and human serum albumin (HSA) was investigated using fluorescence and UV/vis absorption spectroscopy. The experimental results showed that the fluorescence quenching of HSA by IMI was a result of the formation of IMI–HSA complex; static quenching was confirmed to result in the fluorescence quenching. The apparent binding constant KA between IMI and HSA at three differences were obtained to be 1.51 × 104, 1.58 × 104, and 2.19 × 104 L mol?1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be 28.44 kJ mol?1, 174.76 J mol?1 K?1 according to the van’t Hoff equation. Hydrophobic interactions played a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (IMI) was obtained according to fluorescence resonance energy transfer. The effect of IMI on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy CD and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.  相似文献   

20.
The synthetic crystalline hydrous titanium(IV) oxide (CHTO), an anatase variety and thermally stable up to 300 °C, has been used for adsorption of Cr(III) and Cr(VI) from the aqueous solutions, the optimum pH-values of which are 5.0 and 1.5, respectively. The kinetic data correspond very well to the pseudo-second order equation. The rates of adsorption are controlled by the film (boundary layer) diffusion, and increase with increasing temperature. The equilibrium data describe very well the Langmuir, Redlich–Peterson, and Toth isotherms. The monolayer adsorption capacities are high, and increased with increasing temperature. The evaluated ΔG° (kJ · mol?1) and ΔH° (kJ · mol?1) indicate the spontaneous and endothermic nature of the reactions. The adsorptions occur with increase in entropy (ΔS° = positive), and the mean free energy (EDR) values obtained by analysis of equilibrium data with Dubinin–Radushkevick equation indicate the ion-exchange mechanism for Cr(III) and Cr(VI)-adsorptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号