首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterically encumbered chiral l-amino alcohols with secondary amines and tertiary alcohols catalyze the enantioselective alkylation of benzaldehyde with diethyl zinc. Using 2 mol % of amino alcohol catalyst predominantly gave (R)-1-phenylpropanol with enantiomeric excesses of up to 61%. Using the in situ prepared titanium complex at 2 mol % as catalyst also favored the (R)-enantiomer with enantiomeric excesses of up to 73%. In almost all cases, the addition catalyzed by the titanium complex exhibited higher enantioselectivity than that of the amino alcohol ligand alone.  相似文献   

2.
《Tetrahedron: Asymmetry》2014,25(4):334-339
Herein we describe the preparation and characterization of a recoverable catalyst for a Henry reaction based on a Cu(II) complex of block copolymer α-methoxypoly(ethylene glycol)-b-poly(l-glutamic acid) with (2R,5S)- or (2S,5R)-5-isopropyl-5-methyl-2-(pyridine-2-yl)imidazolidine-4-one. The reactions of substituted aldehydes with nitromethane catalyzed by these catalysts proceed with high chemical yield (70–98%) and with high enantioselectivity (61–92% ee). The reaction mixture is in the form of a colloid system and is formed by self-organized aggregates of the catalysts with average hydrodynamic particle size of 189 ± 3 nm (DLS). After sevenfold recycling, the catalyst exhibited no decrease in the enantioselectivity and only a slight decrease (ca. 18%) in the yield for the Henry reaction of nitromethane with 2-methoxybenzaldehyde.  相似文献   

3.
《Tetrahedron: Asymmetry》2006,17(11):1671-1677
Chiral Brønsted acids (R)- and (S)-BINOL were employed as additives in the classic l-proline catalyzed direct aldol reaction. Eighteen substrates were tested with 0.5 mol % (R)-BINOL loading and 1 mol % of (S)-BINOL loading, and the enantioselectivity was improved from 72% ee without additive to 98% ee. In the proposed transition state, the chiral Brønsted acid promoted the reaction through hydrogen bonding, which not only activated the carbonyl group but also stabilized the transition state.  相似文献   

4.
The synthesis of both the (R)- and (S)-enantiomers of the natural product rugulactone has been achieved. Candida rugosa lipase hydrolyzes the butyrate ester of the protected 3-hydroxy homoallylic alcohol with very high enantioselectivity (E = 244) and provides the key intermediates with high enantiomeric purity (ee 98–99%) and excellent yields.  相似文献   

5.
The kinetic resolution of an aromatic β-amino acid amide 3ad via N-acylation was explored with two lipases, Candida antarctica lipase A (CALA) and Pseudomonas stutzeri lipase (PSL). The PSL-catalyzed resolution proceeded with excellent enantioselectivity (E = >400) to give both acylated products and unreacted substrates in enantiopure forms. Three additional aromatic β-amino acid amides 3bd were also resolved by PSL with a high level of enantioselectivity (E = >200). The PSL-catalyzed resolution of 3a was coupled with a Pd-catalyzed racemization to obtain enantiopure N-acylated product (R)-4a (>99% ee) in high yield (90%).  相似文献   

6.
《Tetrahedron letters》2014,55(50):6919-6921
We succeeded in the asymmetric nitroaldol (Henry) reaction of aromatic aldehydes with nitromethane using human serum albumin (HSA) in water at neutral pH. The reaction of 4-nitrobenzaldehyde smoothly proceeded for 24 h at 30 °C to afford the corresponding (R)-2-nitro-1-(4-nitrophenyl)ethanol (27% ee). Lowering the reaction temperature to 0 °C improved the enantioselectivity (53% ee). Although the denatured HSA also catalyzed the coupling reaction, no enantioselectivity was observed. The reaction was also applicable to other substrates bearing various substitutions on the benzene ring, and the ee of (R)-1-(biphenyl-4-yl)-2-nitroethanol was up to 79% ee.  相似文献   

7.
Both enantiomers of calycotomine (R)-5 and (S)-5 were prepared through the CAL-B-catalysed asymmetric O-acylation of N-Boc-protected (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol [(±)-3)]. The optimum conditions for the enzymatic resolution were determined under continuous-flow conditions, while the preparative-scale resolution of (±)-3 was performed as a batch reaction with high enantioselectivity (E >200). The resulting amino alcohol (S)-3 and amino ester (R)-4, obtained with high enantiomeric excess (ee = 99%), were transformed into the desired calycotomine (S)-5 and (R)-5 (ee = 99%). A systematic study was carried out in a continuous-flow system on the O-acylation of tetrahydroisoquinoline amino alcohol homologues (±)-1 to (±)-3 containing a remote stereogenic centre.  相似文献   

8.
Two mesoporous silica-supported chiral Rh and Ru catalysts 5 and 6 with ordered two-dimensional hexagonal mesostructures were prepared by directly postgrafting organometallic complexes RhCl[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] and RuCl2[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] (DPEN = 1,2-diphenylethylenediamine) on SBA-15. During the asymmetric hydrogenation of various aromatic ketones under 40 atm H2, both catalysts exhibited high catalytic activities (more than 97% conversions) and moderate enantioselectivities (33–54% ee). Furthermore, the chiral Rh catalyst 5 could be easily recovered and used repetitively five times without significantly affecting its catalytic activity and enantioselectivity. A catalytic comparison of the mesoporous silica-supported chiral Rh catalyst 4 prepared by a postmodification method is also discussed.  相似文献   

9.
《Tetrahedron: Asymmetry》2007,18(7):892-895
The enantioselective kinetic resolution of two 3-phenyl-2-ketones using four different Baeyer–Villiger monooxygenases (BVMO) expressed recombinantly in Escherichia coli was studied. The highest enantioselectivity (E = 82) was achieved for 3-phenyl-2-butanone using a BVMO originating from Pseudomonas fluorescens. A BVMO from Pseudomonas putida showed an opposite (R)-enantiopreference and E = 12.  相似文献   

10.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

11.
《Tetrahedron: Asymmetry》2005,16(7):1355-1360
Racemic trans-4,5-dimethylhydrofuran-2(3H)-one was synthesised from 5-methyl-furan-2(3H)-one, (α-angelica lactone). The key reaction in the synthesis was the 1,4-conjugate addition of an organocuprate to 5-methylfuran-2(5H)-one (β-angelica lactone). Different types of organocuprates were tested with the highest anti:syn ratio of 99.4:0.6 being obtained by the use of a Gilman organocuprate reagent. The enantioselective acylation of racemic 3-methyl-pentan-1,4-diol, catalysed by a variety of lipases in organic media, was investigated. The highest enantioselectivity (E > 400) was obtained when Novozyme 435 was used as the catalyst at a water activity of aw  0. Thus, both enantiomers, (3S,4R)- and (3R,4S)-3-methyl-pentan-1,4-diol, were obtained in very high diastereomeric (>99% de) and enantiomeric purities (>99.8% and >97.4% ee, respectively).  相似文献   

12.
《Tetrahedron: Asymmetry》2005,16(4):869-874
The efficient enzymatic synthesis of enantiopure 2,3-epoxypropanol (glycidol) has been achieved. The racemic glycidyl butyrate was successfully resolved by enzymatic hydrolysis using a strategy that combines different immobilization protocols and different experimental reaction conditions. A new enzyme (25 kDa lipase)—which is a lipase-like enzyme purified from the pancreatic porcine lipase (PPL) extract—immobilized on DEAE–Sepharose was selected as the optimal biocatalyst. The optimal results were obtained at pH 7, 25 °C and 10% dioxane using this biocatalyst and a very high enantioselectivity for the enzyme was displayed, obtaining both (R)-(−)-glycidyl butyrate and (R)-(+)-glycidol with enantiomeric excesses >99% (E >100). The hydrolysis of (R)-(−)-glycidyl butyrate produced pure (S)-(−)-glycidol.  相似文献   

13.
《Tetrahedron: Asymmetry》2007,18(18):2125-2128
Lipase-catalyzed esterification of (±)-methyl 1′-(1-hydroxyethyl)ferrocene-1-carboxylate 4 afforded its (R)-acetate (−)-5 (ee = 99%) and (S)-(+)-4 (ee = 90%). Stereoretentive azidation/amination/acetylation of (R)-(−)-5 gave (R)-(+)-methyl 1′-(1-acetamidoethyl)ferrocene-1-carboxylate (R)-3 (ee = 98%). In a similar manner (S)-(+)-4 was converted into (S)-(−)-3 (ee = 84%). Both enantiomers of 3 were obtained in high chemical yields without a loss of enantiomeric purity. The title compounds can be coupled with natural amino acids and peptides on both C- and N-termini.  相似文献   

14.
《Solid State Sciences》2007,9(2):137-143
Four new magnesium containing metal–organic hybrid compounds have been synthesized in an effort to prepare low-density materials for hydrogen storage. The compounds were prepared hydrothermally and characterized using single crystal X-ray diffraction. Three of these compounds are analogs of known transition metal structures with squarate (I, Pn-3n, a = 16.276(5) Å), diglycolate (II, P212121, a = 6.860(1) Å, b = 9.993(1) Å, c = 10.884(1) Å, R1 = 0.0341), and glutarate (III, R-3, a = 10.744(2) Å, c = 28.677(5) Å, R1 = 0.0554) ligands; the fourth is a novel structure using cyclobutanetetracarboxylate (IV, Pccn, a = 9.382(1) Å, b = 14.410(2) Å, c = 8.725(1) Å, R1 = 0.0465) which contains potassium as well as magnesium cations.  相似文献   

15.
A novel co-crystal of trans-(R,R)-1,2-cyclohexanediol and (R,R)-tartaric acid (with 1:1 molar ratio, 1) has been found to be a key crystalline compound in the improved resolution of (±)-trans-1,2-cyclohexanediol by supercritical fluid extraction. The molecular and crystal structure of this co-crystal, which crystallizes in orthorhombic crystal system (space group P212121, a = 6.7033(13) Å, b = 7.2643(16), c = 24.863(5), Z = 4), has been solved by single crystal X-ray diffraction (R = 0.064). The packing arrangement consists of two dimensional layers of sandwich-like sheets, where the inner part is constructed by double layers of tartaric acids which hydrophilicity is “covered” on both upper and bottom side by cyclohexanediols with the hydrophobic cyclohexane rings pointing outward. Thus, a rather complex hydrogen bonding pattern is constructed. The relatively high melting point (133 °C) observed by both simultaneous TG/DTA and DSC, and the main features of FTIR-spectrum of 1 are explained by the increased stability of this crystal structure. DSC studies on binary mixtures of co-crystal 1 with (R,R)-1,2-cyclohexanediol or (R,R)-tartaric acid, revealed eutectic temperatures of Teu = 100 or 131 °C, respectively. Between (S,S)-1,2-cyclohexanediol and (R,R)-tartaric acid a eutectic temperature of Teu = 85 °C have also been observed. The phase relations have been confirmed by powder X-ray diffraction, as well.  相似文献   

16.
The general properties of Lecitase® Ultra, a phospholipase manufactured and marketed by Novozymes, Denmark, have been studied after purification by ultrafiltration. The enzyme has a molecular mass of 35 KD, pH-optimum of 8.5, and appears to possess a single active site which exhibits both the lipase and phospholipase activities that increase in the presence of Ca2+ and Mg2+ ions. The enzyme is inhibited by heavy metal ions and surfactants, and does not accept p-nitrophenyl acetate and glycerol triacetate. Substrates, such as glycerol tributyrate and p-nitrophenyl palmitate, esters of N-acetyl-α-amino acids and α-hydroxy acids are readily accepted. Amino acids with aliphatic residues, such as alanine, isoleucine, and methionine, are hydrolyzed with high enantioselectivity for the l-enantiomer (E >100), but amino acids with aromatic residues such as phenylalanine and phenylglycine, and esters of α-hydroxy acids are hydrolyzed with low enantioselectivity (E = 1–5). Immobilization of the enzyme in a gelatin matrix (gelozyme) leads to a marginal improvement in the enantioselectivity for these substrates. However, a dramatic improvement in enantioselectivity is observed for ethyl 2-hydroxy-4-oxo-4-phenylbutyrate (E value increases from 4.5 to 19.5 with S-selectivity). Similarly, glycidate esters, such as ethyl trans-(±)-3-phenyl glycidate and methyl trans-(±)-3-(4-methoxyphenyl) glycidate, are selectively hydrolyzed with a remarkable selectivity towards the (2S,3R)-enantiomer providing unreacted (2R,3S)-glycidate esters (ee >99%, conversion 52–55%) by the immobilized enzyme.  相似文献   

17.
《Tetrahedron: Asymmetry》2005,16(8):1449-1452
Alumina supported rhodium catalyst using cinchonidine as a stabilizer exhibited excellent performance in the asymmetric hydrogenation of ethyl pyruvate with the addition of quinine. Quinine as a chiral modifier can not only induce the enantioselectivity, but also greatly accelerate the reaction. Under the optimum conditions: 293 K, 7.0 MPa of hydrogen pressure and 4.6 × 10−3 mol/L of quinine concentration in THF, TOF of Rh/2(cinchonidine)-γ-Al2O3 as catalyst and ee value of (R)-ethyl lactate can achieve 894 h−1 and 71.6% ee, respectively.  相似文献   

18.
《Tetrahedron: Asymmetry》2006,17(3):416-427
In the presence of a rhodium catalyst (5 mol %) generated in situ from [Rh(cod)Cl]2 and (S,S′)-(R,R′)-C2-ferriphos-tolyl, the asymmetric ring-opening reaction of N-Boc-azabenzonorbornadienes with dibenzylamine proceeded with excellent enantioselectivity (up to >99% ee) to give the corresponding 1,2-diamine scaffolds in high yields. The sequential deprotection of the ring-opened products and treatment with tartaric acid gave the enantiomerically pure 1,2-diamine tartrate salts. These salts were used for the preparation of new chiral ligands such as the salen-type ligands and Trost-type ligands.  相似文献   

19.
A series of phenylaluminum reagents AlPhxEt3?x(L) (x = 1–3) containing adduct ligand L [Et2O, THF, OPPh3, or 4-dimethylaminopyridine (DMAP)] were synthesized and characterized. NMR studies showed that AlPhxEt3?x(L) (x = 1 or 2) exists as an equilibrium mixture of 3–4 species in solution. Solid-state structures of the phenylaluminum reagents reveal a distorted tetrahedral geometry. Asymmetric additions of phenylaluminum to 2-chlorobenzaldehyde were examined employing a titanium(IV) complex [TiL1(OPri)2]2 10 (H2L1 = (1R,2S)-2-(p-tolylsulfonylamino)-1,3-diphenyl-1-propanol) as a catalyst precursor. It was found that the adduct ligand L had a strong influence on the reactivity and the enantioselectivity in asymmetric phenyl additions to aldehydes. The phenylaluminum reagents with OPPh3 or DMAP were unreactive toward aldehydes, and AlPh3(THF) was found to be superior to AlPh3(OEt2) or AlPhEt2(THF). Asymmetric aryl additions of AlAr3(THF) to aldehydes employing a loading of 5 mol % titanium(IV) complex 10 with a strategy of a slow addition of the aldehydes over 20 min were conducted, and the reactions produced optically active secondary alcohols in high yields with excellent enantioselectivities of up to 94% ee.  相似文献   

20.
An unexpected inversion of enantioselectivity, dependent on the degree of quinine loading, was observed during the desymmetrization of glutaric meso-anhydrides. Decrease in catalyst loading from 1.6 equiv to 0.1 equiv caused a clear inversion of stereochemistry—from about 40% ee of (R)-configuration to about 40% ee of the opposite enantiomer. The effect of various carboxylic acid additives was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号