首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This work presents a model to represent ductile failure (i.e. failure controlled by nucleation, growth and coalescence) of materials whose irreversible deformation is controlled by several plastic or viscoplastic deformation mechanisms. In addition work hardening may result from both isotropic and kinematic hardening. Damage is represented by a single variable representing void volume fraction. The model uses an additive decomposition of the plastic strain rate tensor. The model is developed based on the definition of damage dependant effective scalar stresses. The model is first developed within the generalized standard material framework and expressions for Helmholtz free energy, yield potential and dissipation potential are proposed. In absence of void nucleation, the evolution of the void volume fraction is governed by mass conservation and damage does not need to be represented by state variables. The model is extended to account for void nucleation. It is implemented in a finite element software to perform structural computations. The model is applied to three case studies: (i) failure by void growth and coalescence by internal necking (pipeline steel) where plastic flow is either governed by the Gurson–Tvergaard–Needleman model or the Thomason model, (ii) creep failure (Grade 91 creep resistant steel) where viscoplastic flow is controlled by dislocation creep or diffusional creep and (iii) ductile rupture after pre-compression (aluminum alloy) where kinematic hardening plays an important role.  相似文献   

2.
A phenomenological anisotropic damage progression formulation for porous ductile metals with second phases is described through mechanisms of void nucleation, growth and coalescence. The model is motivated from fracture mechanisms and microscale physical observations. To describe the creation of new pores, the decohesion at the particle–matrix interface and the fragmentation of second phase particles, the void-crack nucleation equation is related to several microstructural parameters (fracture toughness, length scale parameter, particle size, volume and fraction of second phase), the plastic strain level, and the stress state. Nucleation is represented by a general symmetric second rank tensor, and its components are proportional to the absolute value of the plastic strain rate components. Based on the Rice and Tracey model, void growth is a scalar function of the trace of damage tensor and the positive triaxiality. Like nucleation, coalescence is a second rank tensor governed by the plastic strain rate tensor and the stress state. The coalescence threshold is related to the void length scale for void impingement and void sheet mechanisms. The coupling of damage with the Bammann–Chiesa–Johnson (BCJ) plasticity model is written in the thermodynamic framework and derives from the concept of effective stress assuming the hypothesis of energy equivalence. A full-implicit algorithm is used for the stress integration and the determination of the consistent tangent operator. Finally, macroscale correlations to cast A356 AL alloy and wrought 6061-T6 AL alloy experimental data are completed with predictive void-crack evolution to illustrate the applicability of the anisotropic damage model.  相似文献   

3.
The following article proposes a damage model that is implemented into a glassy, amorphous thermoplastic thermomechanical inelastic internal state variable framework. Internal state variable evolution equations are defined through thermodynamics, kinematics, and kinetics for isotropic damage arising from two different inclusion types: pores and particles. The damage arising from the particles and crazing is accounted for by three processes of damage: nucleation, growth, and coalescence. Nucleation is defined as the number density of voids/crazes with an associated internal state variable rate equation and is a function of stress state, molecular weight, fracture toughness, particle size, particle volume fraction, temperature, and strain rate. The damage growth is based upon a single void growing as an internal state variable rate equation that is a function of stress state, rate sensitivity, and strain rate. The coalescence internal state variable rate equation is an interactive term between voids and crazes and is a function of the nearest neighbor distance of voids/crazes and size of voids/crazes, temperature, and strain rate. The damage arising from the pre-existing voids employs the Cocks–Ashby void growth rule. The total damage progression is a summation of the damage volume fraction arising from particles and pores and subsequent crazing. The modeling results compare well to experimental findings garnered from the literature. Finally, this formulation can be readily implemented into a finite element analysis.  相似文献   

4.
A phenomenological void–crack nucleation model for ductile metals with secondphases is described which is motivated from fracture mechanics and microscale physicalobservations. The void–crack nucleation model is a function of the fracture toughness of theaggregate material, length scale parameter (taken to be the average size of the second phaseparticles in the examples shown in this writing) , the volume fraction of the second phase, strainlevel, and stress state. These parameters are varied to explore their effects upon the nucleationand damage rates. Examples of correlating the void–crack nucleation model to tension data in theliterature illustrate the utility of the model for several ductile metals. Furthermore, compression,tension, and torsion experiments on a cast Al–Si–Mg alloy were conducted to determinevoid–crack nucleation rates under different loading conditions. The nucleation model was thencorrelated to the cast Al–Si–Mg data as well.  相似文献   

5.
The superplastic deformation and cavitation damage characteristics of a modified aluminum alloy are investigated at a temperature range from 500 to 550°C. The baseline alloy is AA5083. Nominally this alloy contains about 4.5% Mg, 0.8% Mn, 0.2% Cr, 0.037% Si, 0.08% Fe and 0.025% Ti by weight. The experimental program consists of uniaxial tension tests and digital image analysis for measuring cavitation. The experiments reveal that evolution of damage is due to both nucleation and growth of voids. A viscoplastic model for describing deformation and damage in this alloy is developed based on a continuum mechanics framework. The model includes the effect of strain hardening, strain rate sensitivity, dynamic and static recovery, and nucleation and growth of voids. The model predictions compare well with the experimental results.  相似文献   

6.
The purpose of this work is the formulation, numerical implementation and initial application of a non-local extension of existing Gurson-based modelling for isotropic ductile damage and attendant crack growth. It is being carried out under the premise that void coalescence results not only in accelerated damage development (e.g., Needleman and Tvergaard, 1984), but also in damage delocalisation (i.e., via interaction between neighbouring Gurson RVE's). To this end, we proceed by analogy with the approach of Needleman and Tvergaard (1984) who replaced the Gurson void volume fraction f with a (local) effective damage parameter f* in the Gurson yield condition to account for the effect of void coalescence on the material behaviour. In the current case, the role of f* is taken over and generalised by an effective continuum damage field ν. A field relation for ν is formulated here in the framework of continuum thermodynamics. In the simplest case, the resulting relation is formally analogous to the inhomogeneous temperature equation in which void nucleation and growth represent (local) sources for ν and in which void coalescence takes place in a process zone whose dimension is determined by a characteristic material lengthscale. Analogous to temperature, then, ν represents an additional continuum degree-of-freedom here, resulting in a coupled deformation-damage field model. In the last part of the work, the complete model for coupled damage-deformation is implemented numerically using the finite-element method on the basis of backward-Euler integration and consistent linearisation. Using this implementation, the behaviour of the current extended Gurson-based damage model is investigated for the case of simple tension of an inhomogeneous steel block. In particular, the corresponding simulation results document quantitatively the dependence of the delocalisation of the model damage process and minimisation of mesh-dependence on the characteristic dimension of the damage process zone.  相似文献   

7.
魏悦广 《力学学报》2000,32(3):291-299
裂纹在韧性材料中扩展时,将们随着微孔洞的萌生和生长,孔洞的萌生和深化将直接影响着材料的总体断裂韧性和强度,以往的研究主要集中在将裂纹的扩展刻划为微孔洞的萌生、生长和汇合这样一个过程。从传统的断裂过程区模型出发研究微孔洞的萌生和生长对材料总体断裂韧性的影响,通过采用Gurson模型,建立塑性增量本构关系,然后针对定常扩展情况直接进行分析,孔洞对材料断裂韧性的影响由本构关系刻划,而在孔洞汇合模型中,上  相似文献   

8.
Void nucleation, growth, and coalescence in A356 aluminum notch specimens was determined from a combination of experiments, finite element analysis, nondestructive analysis, and image analysis. Notch Bridgman tension experiments were performed on specimens to failure and then other specimens were tested to 90%, 95%, and 98% of the failure load. The specimens were evaluated with nondestructive X-ray tomography and optical image analysis. Finite element simulations of the notch tests were performed with an elastic–plastic internal state variable material model that incorporated the pertinent microstructures (silicon particle volume fraction and size distribution and porosity volume fraction and size distribution). Parametric finite element simulations were performed to give insight into various initial conditions and responses of the notch tensile bars. The various methods all corroborated the same damage progression.  相似文献   

9.
State of the art ductile fracture models often rely on simple power laws to describe the strain hardening of the matrix material. Power laws do not distinguish between the two main stages of hardening observed in polycrystals, referred to as stage III and stage IV hardening, and which emerge from the evolution of the dislocation substructure. The aim of this study is to couple a physics based strain hardening law including these two stages to a micromechanics based ductile damage model. One of the main motivations is that, the stage IV constant hardening rate stage, occurring only at large strain, will be attained in most ductile failure problems if not at the overall level of deformation, at least locally around the growing voids. Furthermore, proper modelling of the stage III involving dislocation storage and recovery terms and the transition to stage IV provides a link with the underlying physical mechanisms of deformation and with the microstructure. First, in order to evaluate the effects of the stage III and stage IV hardening on void growth and coalescence, an extensive parametric study is performed on two-dimensional (2D) axisymmetric finite element (FE) unit cell calculations, using a Kocks-Mecking type hardening law. The cell calculations demonstrate that accounting for the stage IV hardening can have a profound effect on delaying void coalescence and increasing the ductility. The magnitude of the recovery term during stage III has also a significant effect on the void growth rate. Then, the Kocks-Mecking law is incorporated into the Gologanu-Leblond-Devaux (GLD) porous plasticity model supplemented by two different versions of the Thomason void coalescence criterion. The predictions of the damage model are in good agreement with the results of the FE calculations in terms of the stress-strain curves, the evolution of void shape and porosity, as well as the strain value at the onset of void coalescence.  相似文献   

10.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

11.
A new consistent formulation coupling kinematics, thermodynamics, and kinetics with damage using an extended multiplicative decomposition of the deformation gradient that accounts for corrosion effects is proposed. The corrosion model, based upon internal state variable (ISV) theory, captures the effects of general corrosion, pit nucleation, pit growth, pit coalescence, and intergranular corrosion. The different geometrically-affected rate equations are given for each mechanism after the ISV formalism and have a thermodynamic force pair that acts as an internal stress. Pit nucleation is defined as the number density that changes as a function of time driven by the local galvanic electrochemical potential between base matrix material and second phase material. Pit growth is defined as pit surface area growth. Pit coalescence is the interaction of the pits as they grow together and is often characterized by transgranular corrosion and is mathematically constructed from Coulomb’s Law and the Maxwell stress. General corrosion is signified by thickness loss of the material and is characterized by a modified Faraday’s Law. The intergranular corrosion rate is related to the grain boundary effects so that it is characterized by the misorientation between grains. The total damage (void volume or area fraction) is the addition of the general, pitting, and intergranular corrosion. The ability of the model to predict aspects of the corrosion mechanisms and aging history effects of an engineering material are then illustrated by comparison with experimental data of an extruded AZ31 magnesium alloy.  相似文献   

12.
13.
Plastic flow localisation and ductile failure during tensile testing of friction stir welded aluminium specimens are investigated with a specific focus on modelling the local, finite strain, hardening response. In the experimental part, friction stir welds in a 6005A-T6 aluminium alloy were prepared and analysed using digital image correlation (DIC) during tensile testing as well as scanning electron microscopy (SEM) on polished samples and on fracture surfaces. The locations of the various regions of the weld were determined based on hardness measurements, while the flow behaviour of these zones was extracted from micro-tensile specimens cut parallel to the welding direction. The measured material properties and weld topology were introduced into a 3D finite element model, fully coupled with the damage model. A Voce law hardening model involving a constant stage IV is used within an enhanced Gurson type micro-mechanical damage model, accounting for void nucleation, growth and coalescence, as well as void shape evolution. The stage IV hardening, observed in Simar et al. (2010), was found to increase the stiffness during plastic flow localisation as well as to postpone the onset of fracture as determined by the void coalescence criterion. Furthermore, the presence of a second population of voids was concluded to strongly affect the fracture strain of the high strength regions of the welds. This modelling effort links the microstructure and process parameters to macroscopic parameters relevant to the optimisation of the welds.  相似文献   

14.
The growth of a spherical void in an elastic–plastic body, subjected to external pressure or tension and a gas pressure as well as a surface stress at the void surface, is investigated. The deformation, strain and stress state in the full body is presented. In addition, the local and global energy terms are calculated. Finally the total thermodynamic force on the void surface as well as the total dissipation are evaluated and compared allowing the calculation of the mechanical contribution to void growth due to diffusion of vacancies generated by plastification or irradiation.  相似文献   

15.
Elastic–plastic solutions of an anti-plane crack in an infinite body are used in conjunction with a continuum damage model to describe the conditions necessary for the onset of crack instability, fatigue crack propagation due to cyclic loading, and rates of crack growth due to time dependent events. A power law relates the stress to the strain of the material. The damage, which invokes nucleation, growth and coalescence of microvoids due to elevated strain, is confined to the plastic zone surrounding the crack tip. For applied loading below the yield stress, the small-scale and large-scale yielding solutions are used to determine the influence of strain hardening on crack instability and failure. Crack growth due to cyclic loading and time-dependent deformations are studied using the small-scale yielding solution of the deformation theory of plasticity.  相似文献   

16.
The predictive capacity of ductile fracture models when applied to composite and multiphase materials is related to the accuracy of the estimated stress/strain level in the second phases or reinforcements, which defines the condition for damage nucleation. Second phase particles contribute to the overall hardening of the composite before void nucleation, as well as to its softening after their fracture or decohesion. If the volume fraction of reinforcement is larger than a couple of percents, this softening can significantly affect the resistance to plastic localization and cannot be neglected. In order to explicitly account for the effect of second phase particles on the ductile fracture process, this study integrates a damage model based on the Gologanu–Leblond–Devaux constitutive behavior with a mean-field homogenization scheme. Even though the model is more general, the present study focuses on elastic particles dispersed in an elasto-plastic matrix. After assessing the mean-field homogenization scheme through comparison with two-dimensional axisymmetric finite element calculations, an extensive parametric study is performed using the integrated homogenization-damage model. The predictions of the integrated homogenization-damage model are also compared with experimental results on cast aluminum alloys, in terms of both the fracture strain and overall stress–strain curves. The study demonstrates the complex couplings among the load transfer to second phase particles, their resistance to fracture, the void nucleation mode, and the overall ductility.  相似文献   

17.
An elastic–plastic finite element analysis is presented for a notched shaft subjected to multiaxial nonproportional synchronous cyclic tension/torsion loading. The elastic–plastic material property is described by the von Mises yield criterion and the kinematic hardening rule of Prager/Ziegler. The finite element program system ABAQUS is used to solve the boundary value problem. Special emphasis is given to explore the effects of the stress amplitude, the mean-stress, and the mutual interactions on the local stress–strain responses at the notch root.  相似文献   

18.
A micro-mechanics-based model is developed to investigate microcrack damage mechanism of four stages of brittle rock under rotation of the principal stress axes. They consist of linear elastic, non-linear hardening, rapid stress drop and strain softening. The frictional sliding crack model is applied to analyze microcracks nucleation, propagation and coalescence. The strain energy density factor approach is applied to determine the critical condition of microcrack nucleation, propagation and coalescence. The inelastic strain increments are formulated within the framework of thermodynamics with internal variables. Rotation of principal stress axes affect the dynamic damage constitutive relationship and the failure strength of brittle rock.  相似文献   

19.
A nonlinear kinematic hardening rule is developed here within the framework of thermodynamic principles. The derived kinematic hardening evolution equation has three distinct terms: two strain hardening terms and a dynamic recovery term that operates at all times. The proposed hardening rule, which is referred in this paper as the FAPC (Fredrick and Armstrong–Phillips–Chaboche) kinematic hardening rule, shows a combined form of the Frederick and Armstrong backstress evolution equation, Phillips evolution equation, and Chaboche series rule. A new term is incorporated into the Frederick and Armstrong evolution equation that appears to have agreement with the experimental observations that show the motion of the center of the yield surface in the stress space is directed between the gradient to the surface at the stress point and the stress rate direction at that point. The model is further modified in order to simulate nonproportional cyclic hardening by proposing a measure representing the degree of nonproportionality of loading. This measure represents the topology of the incremental stress path. Numerically, it represents the angle between the current stress increment and the previous stress increment, which is interpreted through the material constants of the kinematic hardening evolution equation. This new kinematic hardening rule is incorporated in a material constitutive model based on the von Mises plasticity type and the Chaboche isotropic hardening type. Numerical integration of the incremental elasto-plastic constitutive equations is based on a simple semi-implicit return-mapping algorithm and the full Newton–Raphson iterative method is used to solve the resulting nonlinear equations. Experimental simulations are conducted for proportional and non-proportional cyclic loadings. The model shows good correlation with the experimental results.  相似文献   

20.
Nucleation, growth and coalescence of micro-voids result in the fracture of materials. Most mathematical models neglect nucleation and introduce initial damage, assuming it as a material constant. However, the original damage, which is formed during material working, is a material constant. The initial damage is a model parameter and depends on the load. Apparently, the predictability of such a model is poor.This paper made comparison and analysis of the four classical void growth models and showed their similarities. At the beginning of damage evolution, all the models follow a linear relationship in the form , where c is the size of micro voids and k is a parameter which relates the material and loading condition. With the concept of statistical micro-damage and the assumption of uniform void radius for new voids, a damage evolution equation was deduced based on the above void growth model. With this equation the effects of nucleation and growth at the beginning of the damage stage on the whole process of damage evolution can be calculated. The transition time from the nucleation dominant phase to the growth dominant phase can be determined. When the transition time is applied to the damage failure model of ductile material proposed by Johnson, the initial damage (f0), a model parameter in the original model, can also be determined. The results of the derived damage evolution equation agree well with the previous research results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号