首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to obtain a nicorandil pulsatile release tablet that has a well-regulated release lag time. When nicorandil is used as an antiangina drug, administration time control is important. A pulsatile release tablet is one of the effective approaches to modified release to reduce daily administration frequency. In this study, a pulsatile release tablet of nicorandil was formulated by fumaric acid dry coating around the core tablet including nicorandil. The model tablets, which had different content ratios of excipients in the dry-coating layer, were characterized by a dissolution test. The results showed that the release lag time was generated with fast release profiles. Various lag time controls of tablets were achieved, from 60 to 310 min on average, by variation of outer layer composition. From an analysis of the relation between lag times and outer layer composition, the key ingredient for prolongation of lag time was found to be fumaric acid. To analyze the lag time generation mechanism, water penetration for tablet was measured. The results indicated that the penetration depth was proportionate to the square root of time and the lag time formation mechanism was simple water penetration through the matrix of fumaric acid to the tablet core. The results also showed that the Washburn equation could be used to design the lag time of the pulsatile release tablet in this study. In conclusion, novel release control technology using fumaric acid was appropriate to obtain a nicorandil pulsatile release tablet that has well regulated lag time.  相似文献   

2.
3.
A novel floating sustained release tablet having a cavity in the center was developed by utilizing the physicochemical properties of L-menthol and the penetration of molten hydrophobic polymer into tablets. A dry-coated tablet containing famotidine as a model drug in outer layer was prepared with a L-menthol core by direct compression. The tablet was placed in an oven at 80°C to remove the L-menthol core from tablet. The resulting tablet was then immersed in the molten hydrophobic polymers at 90°C. The buoyancy and drug release properties of tablets were investigated using United States Pharmacopeia (USP) 32 Apparatus 2 (paddle 100 rpm) and 900 ml of 0.01 N HCl. The L-menthol core in tablets disappeared completely through pathways in the outer layer with no drug outflows when placed in an oven for 90 min, resulting in a formation of a hollow tablet. The hollow tablets floated on the dissolution media for a short time and the drug release was rapid due to the disintegration of tablet. When the hollow tablets were immersed in molten hydrophobic polymers for 1 min, the rapid drug release was drastically retarded due to a formation of wax matrices within the shell of tablets and the tablets floated on the media for at least 6 h. When Lubri wax? was used as a polymer, the tablets showed the slowest sustained release. On the other hand, faster sustained release properties were obtained by using glyceryl monostearate (GMS) due to its low hydrophobic nature. The results obtained in this study suggested that the drug release rate from floating tablets could be controlled by both the choice of hydrophobic polymer and the combined use of hydrophobic polymers.  相似文献   

4.
Absorption of diltiazem in beagle dog from pulsatile release tablet.   总被引:1,自引:0,他引:1  
An orally applicable pulsatile drug delivery system in dry-coated tablet form was prepared using diltiazem hydrochloride as the model drug, and a polyvinyl chloride-hydrogenated castor oil-polyethyleneglycol mixture as the outer shell of the tablet. In vitro drug release from the prepared tablet exhibited a typical pulsatile pattern with a 7 h lag phase (non-drug release period). This dosage form was orally administered to three beagle dogs under non-fasting and fasting conditions, and the plasma concentration level of diltiazem was determined according to time after administration. The result of the in vivo study in non-fasting dogs suggested that the drug could be released in the gastrointestinal tract as in the in vitro test. However, under the fasting condition, a large difference in the plasma concentration profile was found, suggesting that the disintegration time of the tablet tended to be influenced by the feeding condition of subject.  相似文献   

5.
A blend of floating and pulsatile principles of drug delivery system seems to present the advantage that a drug can be released in the upper GI tract after a definite time period of no drug release. The objective of this study was to develop and evaluate a floating and pulsatile drug delivery system based on an impermeable cylinder. Pulsatile capsule was prepared by sealing the drug tablet and the buoyant material filler inside the impermeable capsule body with erodible plug. The drug delivery system showed typical floating and pulsatile release profile with a lag time followed by a rapid release phase. The lag time prior to the pulsatile drug release correlated well with the erosion properties of plugs and the composition of the plug could be controlled by the weight of the plug. The buoyancy of the whole system depended on the bulk density of the dosage form. Gamma-scintigraphic evaluation in humans was used to establish methodology capable of showing the subsequent in vivo performance of the floating and pulsatile release capsule. Developed formulations showed instantaneous floating with no drug release during the lag time followed by a pulse drug release. From the gamma-scintigraphic results, the pulsatile release capsule we prepared could achieve a rapid release after lag time in vivo, which was longer than that in vitro. The scintigraphic evaluation could confirm qualitatively that the system with in vitro lag time of 4.0 h provided, with relatively high reproducibility, a pulsatile release occurred around 5.0 h after administration.  相似文献   

6.
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.  相似文献   

7.
To examine the influence of the internal structure of a wax matrix tablet on in vitro drug release, the release rates of several tablets consisting of various proportions of drug and wax were compared with the water penetration rates from the compressed and lateral surfaces of the tablets. The penetration rates from the lateral surface were found to be much faster than those from the compressed surface in all cases. A theoretical equation involving a two-dissolving-direction was derived on the basis of the boundary retreating concept. The retreating rate constants deduced from the dissolution results were well coincident with the values directly determined by the needle penetration method, suggesting good applicability of the proposed equation. The results suggest that the tortuosity of the water channels created in a tablet during dissolution is generally smaller in the horizontal direction than that in the vertical direction. This would be caused by the drug particles or granules being elongated in the horizontal direction by compression.  相似文献   

8.
A novel intragastric floating drug delivery system (FDDS) has been prepared by pulsed plasma-irradiation on the double-compressed tablet of 5-Fluorouracil (5-FU) as a core material with outer layer composed of a 68/17/15 weight ratio of Povidone (PVP), Eudragit RL (E-RL) and NaHCO3. The plasma heat flux caused the thermal decomposition of NaHCO3 to generate carbon dioxide and the resultant gases were trapped in bulk phase of outer layer, so that the tablets turned to have a lower density than the gastric contents and remained buoyant in simulated gastric fluid for a prolonged period of time. In addition, the release of 5-FU from the tablet is sustained by occurrence of plasma-induced crosslink reaction on the outer layer of tablet and the release rate of 5-FU can be well controlled by plasma operational conditions.  相似文献   

9.
The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.  相似文献   

10.
The salting-out taste-masking system is a multiparticulate system consisting of a drug core, a salting-out layer containing salts and water-soluble polymers, and a water-penetration control layer containing water-insoluble materials. The system generates a long lag time (time when released drug is less than 1%) for numbness masking, and a subsequent immediate drug release for high bioavailability. Aiming to contain the system and drugs that cause numbness in oral disintegrating tablets, the system was optimized to reduce the particle size and contain drugs with high water solubility in this study. The amount of coating on the layers, the coating solvent, and the positioning of the components were also optimized. The findings in this study will lead to the provision of numbness-masked oral disintegrating tablets to patients.  相似文献   

11.
Metformin/Gliclazide extended release tablets were formulated with Eudragit NE30D by wet granulation technique. Two batches were prepared in order to study influence of drug polymer ratio on the tablet formation and in vitro drug release. The formulated tablets were characterized by disintegration time, hardness, friability, thickness, weight variation, and in vitro drug release. The percentage of polymer, with respect to Metformin/Gliclazide, required to produce tablets with acceptable qualities was 9 to 13.45. The percentage of polymer below this range released the drug immediately and above this range produced granules not suitable for tablet formation. The quantity of Metformin/Gliclazide present in the tablets and the release medium were estimated by a validated HPLC method. The formulated tablets had acceptable physicochemical characters and released the drug over 6-8 h. The data obtained from in vitro release studies were fitted with various kinetic models and was found to follow Higuchi kinetics.  相似文献   

12.
The aims of the present study were to prepare hydroxypropylmethyl cellulose (HPMC)-based porous matrix tablets for gastroretentive drug delivery and to characterize their physicochemical properties. Gabapentin (GBP) was used as a model drug. Paste containing GBP, HPMC and water was molded and freeze-dried to prepare freeze-dried gastroretentive matrix tablet (FD-GRT). In vitro drug release and erosion studies were also performed. Although FD-GRT exhibited porous structure, they had good tablet strength and friability. Density of FD-GRT ranged from 0.402 to 0.509 g/cm3 and thus they could float on the medium surface without any lag time. FD-GRT was remained floated until the entire matrix erosion or end of drug release during in vitro release test. Release behavior of GBP could be modulated by the amount and the viscosity grade of HPMC. However, large amount and high viscosity of HPMC caused trouble in molding prior to freeze-drying. Addition of ethylcellulose could retard the release rate of GBP, with relatively low increase in viscosity of paste. Since pores generated by freeze drying imparted buoyancy for gastric retention to FD-GRT, additional materials for buoyancy was not necessary and FD-GRT had no lag time for buoyancy due to low density. Therefore it could be a promising tool for gastroretentive drug delivery.  相似文献   

13.
Controlled-release effervescent floating bilayer tablets reduce dosage frequency and improve patient compliance with enhanced therapeutic outcomes. Generally, two different tablets of clarithromycin and esomeprazole, respectively, are given for the treatment of Helicobacter pylori infection and it might be worth incorporating both in a single tablet. In the current study, controlled-release floating bilayer tablets of clarithromycin and esomeprazole (F1–F4) were developed with different rates of polymeric materials by a direct compression method. During the formulation, Fourier-transform infrared spectroscopy (FTIR) analysis was performed for possible interactions between drugs and excipients. No interactions between drugs and excipients were noted. Moreover, the bilayer tablets’ thickness, diameter, friability, hardness, weight variation, dissolution, and percent purity were found within the acceptable limits. The floating lag time and total floating time of all formulations were found to be < 25 s and 24 h, respectively. The release of both the clarithromycin and esomeprazole started at the same time from the controlled-release floating bilayer tablets by anomalous non-Fickian diffusion, and the polymeric materials extended the drug release rate up to 24 h. In the case of F1, the results approached ideal zero-order kinetics. The dissolution profiles of the tested and reference tablet formulations were compared, but no significant differences were observed. It can be concluded that such controlled-release effervescent floating bilayer tablets can be efficiently used in clinical practice to reduce dosage frequency and increase patient compliance with continuous drug release for 24 h, which ultimately might enhance therapeutic efficacy.  相似文献   

14.
Release property of reservoir device matrix tablet was examined. Wax matrix layer was prepared from physical mixture of lactose and hydrogenated castor oil to obtain basic release properties. Release process showed zero order kinetics in a steady state after a given lag times, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time was considered to be the time required forming water channel and the time begun to release drug through the wax matrix layer at the same time. The lag time obtained by applying the square root law equation was well connected with the amount of matrix layer and mixed weight fraction of component in matrix layer. The second stage was the zero order release process of drug in the reservoir through the wax matrix layer. The release rate constants were calculated by taking into accounts of the thickness of matrix layer and permeability coefficient, and were well connected with the amount of matrix layer and mixed weight fraction of component. Also it was suggested that the tortuosity of matrix layer could be expressed by a function of the porosity defined by the mixed weight fraction.  相似文献   

15.
Oral controlled drug delivery systems have become an essential part of the development of new medicines. In this investigation, several controlled release drug delivery systems with various structures were designed and evaluated. The materials used in their preparation were mainly hydropolymers that play a dominant role as drug carriers. Polymer selection is determined by the intended use and the desired release profile. The design of the devices was based on a matrix tablet, which is used as a core tablet for the preparation of all other systems such as multilayer systems, core in cup systems and hybrid systems. The findings of the study indicate that all systems exhibit controlled release characteristics. Furthermore, the structure of the device appears to significantly affect its behavior, i.e., the drug release and its release rate. Increasing the covered area of the core tablet results in a decrease of drug release since the cover hindrances the contact of the liquid with the core surface and modifies its dissolution and consequently its release. The hybrid systems exhibited pulsatile release, a feature offering significant advantages for certain therapies. Furthermore, the materials used considerably influence the behavior and function of the system. These effects may be attributed to the nature and the properties of the materials employed. Release mechanisms are also affected considerably by these factors.  相似文献   

16.
Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.  相似文献   

17.
Risperidone is an atypical antipsychotic drug used to treat schizophrenia. This study aims to formulate risperidone as effervescent tablets to improve patient compliance. Different nanoemulsion combinations were loaded with risperidone to improve its poor water solubility then adsorbed on Aeroperl. The formula showing highest drug dissolution was formulated as effervescent tablets. Factorial design was applied for different tablet formulation variables and the prepared formulae were tested for different criteria in comparison with their corresponding formulae containing drug without nanoemulsion formulation. Statistical analysis was used to determine the most desirable tablet formula considering its Carr index, effervescence time, and drug release.  相似文献   

18.
In our previous work, a controlled porosity osmotic pump system with biphasic release of theophylline, a system composed of a tablet-in-tablet (TNT) core and a controlled porosity coating membrane, was developed for the nocturnal therapy of asthma. Sodium phosphate and sodium chloride were selected as the osmotic agents in inner and outer layer of the TNT core respectively, and CA-PEG400-DEP (54.5%-36.4%-9.1%, w/w) was chosen as coating solution. Formulations with weight gain of 19 mg/T (mg per tablet), 9 mg/T and 6 mg/T were prepared respectively and their pharmacokinetics in beagle dogs were also studied to examine the influence of weight gain on their in vivo pharmacokinetics. Sustained release tablet of theophylline (SRT) was selected as reference to evaluate the in vitro and in vivo difference between conventional sustained release tablets and the developed formulation. T(max) and mean residence time (MRT) of the developed formulations were prolonged compared to that of SRT and a satisfying bioavailability was achieved at weight gain of 6 mg/T. If applied to the chronotherapy of asthma at night, the developed formulation with a weight gain of 6 mg/T might help to reduce the inconvenience brought by too later administration of conventional dosage forms and maintain a relatively high blood drug concentration 7 h after administration.  相似文献   

19.
The objective of the study is to formulate bilayer tablets consisting of atorvastatin calcium (AT) as an immediate release layer and nicotinic acid (NA) as an extended release layer. The immediate release layer was prepared using super disintegrant croscarmellose sodium and extended release layer using hydroxypropylmethyl cellulose (HPMC K100M). Both the matrix and bilayer tablets were evaluated for hardness, friability, weight variation, thickness, and drug content uniformity and subjected to in vitro drug release studies. The amount of AT and NA released at different time intervals were estimated by HPLC method. The bilayer tablets showed no significant change either in physical appearance, drug content or in dissolution pattern after storing at 40 degrees C/75% relative humiding (RH) for 3 months. The release of the drug from the tablet was influenced by the polymer content and it was much evident from thermogravimetry/differential thermal analysis (TG/DTA) analysis. The results indicated that the bilayer tablets could be a potential dosage form for delivering AT and NA.  相似文献   

20.
We have found that a repetitive pulsatile drug release with a certain time interval is observed from a monolithic hydrogel device by surface erosion of the hydrogel. As a model system of pulsatile drug release, dibucaine hydrochloride and kappa-carrageenan hydrogel were chosen as a drug and a device, respectively. Electrostatic interactions between dibucaine hydrochloride and kappa-carrageenan polymer segments are strong, since dibucaine hydrochloride is positively charged and each disaccharide repeating unit of kappa-carrageenan chains has one sulfate group. Dibucaine hydrochloride was loaded into the hydrogel by immersing dry kappa-carrageenan hydrogel disks in a dibucaine hydrochloride solution for 24 h. The pulsed release of dibucaine hydrochloride from the device was observed every 50 min between 30 and 250 min after the release starts. The weight of kappa-carrageenan hydrogel decreases in an oscillatory manner with time in distilled water. The oscillatory changes observed in the hydrogel weight in distilled water are considered to be caused by influx and efflux of water molecules into and from the surface and core of the hydrogel and by polymer liberation from the hydrogel. This phenomenon was well explained by our kinetic model [Colloids and Surfaces B 8 (1996) 93-100]. The time interval between pulses observed in drug release coincides with that observed in the oscillatory weight change of the hydrogel. From these, it was concluded that the pulsatile release of dibucaine hydrochloride from the device was caused by the pulsatile liberation of swollen kappa-carrageenan hydrogel from the surface of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号