首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete active space with second-order perturbation theory/complete active space self-consistent-field method was used to explore the nonradiative decay mechanism for excited 9H-guanine. On the 1pipi* (1L(a)) surface we determined a conical intersection (CI), labeled (S0pipi*)(CI), between the 1pipi* (1L(a)) excited state and the ground state, and a minimum, labeled (pipi*)min. For the 1pipi* (1L(a)) state, its probable deactivation path is to undergo a spontaneous relaxation to (pipi*)min first and then decay to the ground state through (S0pipi*)(CI), during which a small activation energy is required. On the 1n(N)pi* surface a CI between the 1n(N)pi* and 1pipi* (1L(a)) states was located, which suggests that the 1n(N)pi* excited state could transform to the 1pipi* (1L(a)) excited state first and then follow the deactivation path of the 1pipi* (1L(a)) state. This CI was also possibly involved in the nonradiative decay path of the second lowest 1pipi* (1L(b)) state. On the 1n(O)pi* surface a minimum was determined. The deactivation of the 1n(O)pi* state to the ground state was estimated to be energetically unfavorable. On the 1pisigma* surface, the dissociation of the N-H bond of the six-membered ring is difficult to occur due to a significant barrier.  相似文献   

2.
Azobenzene E<==>Z photoisomerization, following excitation to the bright S(pi pi*) state, is investigated by means of ab initio CASSCF optimizations and perturbative CASPT2 corrections. Specifically, by elucidating the S(pi pi*) deactivation paths, we explain the mechanism responsible for azobenzene photoisomerization, the lower isomerization quantum yields observed for the S(pi pi*) excitation than for the S1(n pi*) excitation in the isolated molecule, and the recovery of the Kasha rule observed in sterically hindered azobenzenes. We find that a doubly excited state is a photoreaction intermediate that plays a very important role in the decay of the bright S(pi pi*). We show that this doubly excited state, which is immediately populated by molecules excited to S(pi pi*), drives the photoisomerization along the torsion path and also induces a fast internal conversion to the S1(n pi*) at a variety of geometries, thus shaping (all the most important features of) the S(pi pi*) decay pathway and photoreactivity. We reach this conclusion by determining the critical structures, the minimum energy paths originating on the bright S(pi pi*) state and on other relevant excited states including S1(n pi*), and by characterizing the conical intersection seams that are important in deciding the photochemical outcome. The model is consistent with the most recent time-resolved spectroscopic and photochemical data.  相似文献   

3.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

4.
The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated 1(pi pi* L(a)) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L(a))CI. On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, 1(pi pi* L(b)) and, in particular, 1(n(O) pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.  相似文献   

5.
The photophysically important potential energy surfaces of the fluorescent pyrimidine analog 5-methyl-2-pyrimidinone have been explored using multireference configuration-interaction ab initio methods at three levels of dynamical correlation, all of which support a fluorescence mechanism. At vertical excitation S1 (dark, n(N)pi*) and S2 (bright, pipi*) are almost degenerate at 4.4 eV, with S3 (dark, n(O)pi*) at 5.1 eV. The excited system can follow the S1-S2 seam of conical intersections, accessible from the Franck-Condon region, to its minimum and then evolve from this conical intersection on the S1 (pipi*) surface to a global minimum. At lower levels of correlation, the S1 surface shows two minima separated by a barrier of up to 0.18 eV. The secondary minimum found at the lower levels of correlation becomes the global minimum with higher correlation. The S1 population at this minimum can be trapped from accessing the lowest energy S0-S1 (pipi*/gs) conical intersection by an energy gap at least 0.3-0.4 eV higher than the S1 minimum. The calculated emission energy from this minimum is 2.80 eV. Gradient pathways connecting important S1 geometries are presented, as well as other excited state conical intersections.  相似文献   

6.
CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced by hydrogen donors is less general for (1)(pi,pi*) than for (1)(n,pi*) states.  相似文献   

7.
The ultrafast radiationless decay mechanism of photoexcited cytosine has been theoretically supported by exploring the important potential energy surfaces using multireference configuration-interaction ab initio methods for the gas-phase keto-tautomer free base. At vertical excitation, the bright state is S1 (pipi*) at 5.14 eV, with S2 (nNpi*) and S3 (nOpi*) being dark states at 5.29 and 5.93 eV, respectively. Minimum energy paths connect the Franck-Condon region to a shallow minimum on the pipi* surface at 4.31 eV. Two different energetically accessible conical intersections with the ground state surface are shown to be connected to this minimum. One pathway involves N3 distorting out of plane in a sofa conformation, and the other pathway involves a dihedral twist about the C5-C6 bond. Each of these pathways from the minimum contains a low barrier of 0.14 eV, easily accessed by low vibronic levels. The path involving the N3 sofa distortion leads to a conical intersection with the ground state at 4.27 eV. The other pathway leads to an intersection with the ground state at 3.98 eV, lower than the minimum by about 0.3 eV. Comparisons with our previously reported study of the fluorescent cytosine analogue 5-methyl-2-pyrimidinone (5M2P) reveal remarkably similar conformational distortions throughout the decay pathways of both bases. The different photophysical behavior between the two molecules is attributed to energetic differences. Vertical excitation in cytosine occurs at a much higher energy initially, creating more vibrational energy than 5M2P in the Franck-Condon region, and the minimum S1 energy for 5M2P is too low to access an intersection with the ground state, causing population trapping and fluorescence. Calculations of vertical excitation energies of 5-amino-2-pyrimidinone and 2-pyrimidinone reveal that the higher excitation energy of cytosine is likely due to the presence of the amino group at the 4-position.  相似文献   

8.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

9.
The decay paths on the singlet excited-state surface of 9H-adenine and the associated energy barriers have been calculated at the CAS-PT2//CASSCF level. There are three fundamental paths for the photophysics: two paths for the (1)L(b) state which are virtually barrierless at the present level of theory and correspond to formation of the (n,pi) intermediate and direct decay to the ground state and a third path for ground-state decay of the (n,pi) state with an activation barrier of approximately 0.1 eV. The (1)L(a) state, which has the largest oscillator strength, either decays directly to the ground state or contributes indirectly to the excited-state lifetime by populating the two other states. The results are used to interpret the photophysics in terms of an excited-state plateau for the (1)L(b) state that corresponds to the short-lived excited-state component (approximately 0.1 ps) and a well (i.e., a proper minimum) for the (n,pi) state that gives rise to the long component (1 ps or more). The direct decay to the ground state of the (1)L(b) state is probably the decay channel invoked to explain the experimental wavelength dependence of the relative amplitudes of the two components. In addition to that, the excited-state component in the nanosecond range detected in the time-resolved photoelectron spectrum is proposed to be a triplet (pi,pi) state formed after intersystem crossing from the singlet (n,pi) state.  相似文献   

10.
Two low-energy deactivation paths for singlet excited cytosine, one through a S1/S0 conical intersection of the ethylene type, and one through a conical intersection that involves the (nN, π*) state, are calculated in the presence of water. Water is included explicitly for several cytosine monohydrates, and as a bulk solvent, and the calculations are carried out at the complete active space self-consistent field (CASSCF) and complete active space second order perturbation (CASPT2) levels of theory. The effect of water on the lowest-energy path through the ethylenic conical intersection is a lowering of the energy barrier. This is explained by stabilization of the excited state, which has zwitterionic character in the vicinity of the conical intersection due to its similarity with the conical intersection of ethylene. In contrast to this, the path that involves the (nN, π*) state is destabilized by hydrogen bonding, although the bulk solvent effect reduces the destabilization. Overall, this path should remain energetically accessible.  相似文献   

11.
Several reaction pathways for the photochemical transformations of methyl-substituted pyrazine in its first excited state 1(pi --> pi*) have been determined using the CASSCF (six-orbital/six-electron active space) and MP2-CAS methods with the 6-311G(d) basis set. Our model investigations suggest that conical intersections play a crucial role in the photoisomerization of pyrazines. Moreover, the present theoretical findings indicate that all of the photoisomerizations of pyrazines adopt the same reaction path as follows: pyrazine --> Franck-Condon region --> conical intersection --> pyrimidine. That is, although an excited-state pyrazine molecule can initiate a phototransposition process easily, this process can be completed on the ground-state potential energy surface after passage through a conical intersection where a fast, radiationless decay is possible. The existence of these nonadiabatic reaction pathways is consistent with the available experimental observations of the photochemistry and photophysics of pyrazine and its methyl derivatives. In the present work, we propose a simple p-pi orbital topology model, which can be used as a diagnostic tool to predict the location of the conical intersections, as well as the geometries of the phototransposition products of various heterocycles.  相似文献   

12.
An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.  相似文献   

13.
Combined density functional and multireference configuration interaction methods have been used to calculate the electronic spectrum of 9H-adenine, the most stable tautomer of 6-aminopurine. In addition, constrained minimum energy paths on excited potential energy hypersurfaces have been determined along several relaxation coordinates. The minimum of the first (1)[n-->pi*] state has been located at an energy of 4.54 eV for a nuclear arrangement in which the amino group is pyramidal whereas the ring system remains planar. Close by, another minimum on the S(1) potential energy hypersurface has been detected in which the C(2) center is deflected out of the molecular plane and the electronic character of S(1) corresponds to a nearly equal mixture of (1)[pi-->pi*] and (1)[n-->pi*] configurations. The adiabatic excitation energy of this minimum amounts to 4.47 eV. Vertical and adiabatic excitation energies of the lowest n-->pi* and pi-->pi* transitions as well as transition moments and their directions are in very good agreement with experimental data and lend confidence to the present quantum chemical treatment. On the S(1) potential energy hypersurface, an energetically favorable path from the singlet n-->pi* minimum toward a conical intersection with the electronic ground state has been identified. Close to the conical intersection, the six-membered ring of adenine is strongly puckered and the electronic structure of the S(1) state corresponds to a pi-->pi* excitation. The energetic accessibility of this relaxation path at about 0.1 eV above the singlet n-->pi* minimum is presumably responsible for the ultrafast decay of 9H-adenine after photoexcitation and explains why sharp vibronic peaks can only be observed in a rather narrow wavelength range above the origin. The detected mechanism should be equally applicable to adenosine and 9-methyladenine because it involves primarily geometry changes in the six-membered ring whereas the nuclear arrangement of the five-membered ring (including the N(9) center) is largely preserved.  相似文献   

14.
By integrating the results of MS-CASPT2/CASSCF and TD-PBE0 calculations, we propose a mechanism for the decay of the excited dark state in pyrimidine, fully consistent with all the available experimental results. An effective conical intersection (CI-npi) exists between the spectroscopic pi/pi* excited state (Spi) and a dark n/pi* state (Sn), and a fraction of the population decays to the minimum of Sn (Sn-min). The conical intersection between Sn and the ground-state is not involved in the decay mechanism, because of its high energy gap with respect to Sn-min. On the other hand, especially in hydrogen bonding solvents, the energy gap between Sn-min and CI-npi is rather small. After thermalization in Sn-min, the system can thus recross CI-npi and then quickly proceed on the Spi barrierless path toward the conical intersection with the ground state.  相似文献   

15.
The radiationless decay mechanisms of the S1 excited states of the 7H-keto-amino, 7H-enol-amino, and 7H-keto-imino tautomers of guanine have been investigated with the CASPT2//CASSCF method. Out-of-plane deformation of the six-membered ring or the imino group as well as dissociation of NH bonds have been considered as photochemical pathways leading to conical intersections with the electronic ground state. It has been found that all three tautomers can reach S0-S1 conical intersections by out-of-plane deformation. However, only in the 7H-keto-amino tautomer the reaction path leading to the conical intersection is barrierless. This tautomer also has the lowest energy barrier for hydrogen detachment via the (1)pi sigma* state, whose potential energy surface intersects that of the (1)pi pi* state as well as that of the ground state. The other tautomers of guanine exhibit substantial energy barriers on their S1 potential energy surfaces with respect to both reaction mechanisms. These findings suggest that the 7H-keto-amino tautomer exhibits the shortest excited-state lifetime of the three tautomers due to particularly fast nonradiative deactivation processes through S0-S1 conical intersections. The computational results explain the remarkable observation that the energetically most stable 7H-keto-amino tautomer is missing in the resonant two-photon ionization spectrum of guanine in a supersonic jet. The results also explain that the energetically less stable 7H-enol-amino and 7H-keto-imino tautomers have longer excited-state lifetimes and are thus detectable by resonant two-photon ionization.  相似文献   

16.
The mechanisms of the two reaction pathways for the photochemical transformations of methyl substituted imidazoles (i.e., 1,4-dimethyl-imidazole and 1,4,5-trimethyl-imidazole) in their first excited state (1pi --> 1pi*) have been determined using the CASSCF (10-electron/8-orbital active space) and MP2-CAS methods with the 6-311(d) basis set. These two reaction pathways are denoted as the conical intersection path (path 1) and the internal cyclization-isomerization path (path 2). Our model investigations suggest that conical intersections play a crucial role in the photorearrangements of imidazoles. Additionally, the present theoretical findings suggest that photoisomerizations of imidazoles via path 1 should adopt the reaction path as follows: imidazole --> Franck-Condon region --> conical intersection --> photoproduct. Moreover, we have examined the alternative mechanism, the internal cyclization-isomerization path (path 2), which consists of a sequence of small geometric rearrangements. Our theoretical investigations suggest that for the photorearrangement of 1,4-dimethyl-imidazole both mechanisms are comparable. On the other hand, for the photorearrangement of 1,4,5-trimethyl-imidazole path 1 should be favored over path 2. Our present theoretical results agree with the available experimental observations.  相似文献   

17.
The ultrafast S(1)((1)ππ*) → S(0) deactivation process of thiophene in the gas phase has been simulated with the complete active space self-consistent field (CASSCF) based fewest switch surface hopping method. It was found that most of the calculated trajectories (~80%) decay to the ground state (S(0)) with an averaged time constant of 65 ± 5 fs. This is in good agreement with the experimental value of about 80 fs. Two conical intersections were determined to be responsible for the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. After thiophene is excited to the S(1)((1)ππ*) state in the Franck-Condon region, it quickly relaxes to the minimum of the S(1)((1)ππ*) state, then overcomes a small barrier near the conical intersection (CI((1)ππ*/(1)πσ*)), and eventually arrives at the minimum of one C-S bond fission (S(1)((1)πσ*)). In the vicinity of this minimum, the conical intersection (CI((1)πσ*/S(0))) funnels the electron population to the ground state (S(0)), completing the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. This decay mechanism matches well with previous experimental and theoretical studies.  相似文献   

18.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

19.
Photoexcitations and photoisomerizations due to low-lying n pi* and pi pi* excited states of dimethylpyridines are investigated by density functional theory, CASSCF, CASPT2 and MRCI methodologies. Mechanistic details for the formation of Dewar dimethylpyridines and the interconversions of dimethylpyridines are rationalized through the characterization of minima and transition states on the singlet and triplet potential energy surfaces of relevant intermediates. Our present theoretical schemes suggest that Mobius dimethylpyridine intermediate 14 and azabenzvalene intermediate 10 can serve as possible precursors to Dewar dimethylpyridines and singlet phototransposition products, respectively. The calculations suggest that an S1(pi pi*)/S0 conical intersection in dimethylpyridines 2 is involved in the formation of 14. An azabenzvalene 10 might be formed through S2(pi pi*)/S1(n pi*) interaction followed by an S1/S0 decay in dimethylpyridine 6. Calculated barriers of isomerizations from 14 to Dewar dimethylpyridine 7 and from 10 to 4 are 8.4 and 28.5 kcal mol(-1) at the B3LYP/6-311 G** level, respectively. In the suggested triplet multistage transposition mechanism, an out-of-plane distorted geometry 19 due to vibrational relaxation of the T1(3B1) excited state of 3,5-dimethylpyridine 6 is a precursor of the interconversion of 6 to 2.4-dimethylpyridine 4. The formation of a triplet azaprefulvene 21 with a barrier of 20.7 kcal mol(-1) is a key step during the triplet migration process leading to another out-of-plane distorted structure 27. Subsequent rearomatization of 27 completes the interconversion of 6 with 4. Present calculations provide some insight into the photochemistry of dimethylpyridines at 254 nm.  相似文献   

20.
Excited state reaction paths and the corresponding energy profiles of salicylic acid have been determined with the CC2 method, which is a simplified version of singles-and-doubles coupled cluster theory. At crucial points of the potential energy hypersurfaces, single-point energy calculations have been performed with the CASPT2 method (second-order perturbation theory based on the complete active space self-consistent field reference). Hydrogen transfer along the intramolecular hydrogen bond as well as torsion and pyramidization of the carboxy group have been identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer represents a local minimum of the S(1) energy surface, which is separated by a very low barrier from a reaction path leading to a low-lying S(1)-S(0) conical intersection via torsion and pyramidization of the carboxy group. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the carboxy group, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the two known minima of the S(0) potential energy surface (rotamer I, rotamer II). A novel structure, 7-oxa-bicyclo[4.2.0]octa-1(6),2,4-triene-8,8-diol, has been identified as a possible transient intermediate in the photophysics of salicylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号