首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
在气体动力学问题研究中经常会碰到诸如激波、翼型设计等未知界面问题。未知界面的存在为该类问题的理论分析和数值求解带来了很大困难。刘高联针对未知界面问题发展了一种变域变分有限元方法,该方法将未知界面看作是一个变化区域的边界,采用变域变分将未知界面结合在变分泛函中,使其与求解流场的控制方程结合起来,从而将未知界面的求解和流场的求解完全耦合进行,因而是一种处理未知界面的独特工具,极适合于气动外形的设计求解。本文运用变域变分有限元方法对翼型跨音速流动正、反命题进行了数值研究。由于在跨音速翼型绕流中存在激波,所以为了得到压缩激波解,采用了“人工密度”办法。几个算例均得到了满意的计算结果和设计结果,证明了本文方法的有效性和优越性。  相似文献   

2.
在激波区使用自适应壁对跨音速翼型的激波/边界层的相互作用(干扰)进行控制,可改变机翼的气动性能,这种被动控制可通过在翼型的激波区开一凹腔,其上覆盖一弹性橡胶膜柔壁来,本文给出用Navier-Stoker方程数值模拟这一自适应控制翼型的跨音速粘性绕流,提出了一个适应于本特殊情况(物面边界局部地区在求解过程中有变化)的处理办法。并探讨了自适应柔壁对当代跨音速翼绕流的影响。  相似文献   

3.
非定常流动变分原理的建立使得用有限元法来求解多工况点的设计问题成为可能。本文在刘高联的非定常变分理论的基础上,对定常变分问题进行时间相关有限元求解。但由于可压缩非定常位势流动的控制方程是双曲型的,简单地把时间当作同空间一样的物理维来求解是不可行的。而现有的时-空有限元法极其复杂,增加了计算复杂度,使其很难用于工程设计中。为此,文[2、3]提出了求解一维非定常问题的新型时-空有限元法。本文把该方法推广到二维流动,用它求解二维弯管内的流动和翼型绕流问题。计算结果与用定常方法求得的结果几乎重合,说明该方法可以用于多维时间相关求解。  相似文献   

4.
跨音速流动条件下湿空气中的水蒸气由于快速膨胀而发生非平衡凝结,凝结潜热对跨音速气流进行加热,会显著改变气流的流动特性。通过对商用计算流体动力学软件FLUENT进行二次开发,建立了湿空气非平衡凝结流动的数值求解方法。该方法可用于二维或三维、粘性或无粘、内流或外流的求解中。采用该方法分剐对缩放喷管、透平叶栅以及绕CA-0.1圆弧翼型的湿空气非平衡凝结流动进行了数值分析。计算结果表明:湿空气凝结手l起缩放喷管中的凝结激波、导致叶橱流动中总压降低;对于翼型周围的流动,在相对湿度分别为50%、57.1%、64.1%时,依次计算得到了单激波、五激波、双激波。  相似文献   

5.
反命题作为一种可变(未知)边界问题近年来得到了广泛的研究。本文给出了亚声速平面叶栅反命题计算的势函数变域变分有限元解法。变域变分通过把可变边界结合在变分泛函中,使其与求解流场的控制方程结合起来,从而使可变边界求解和流场分析可以完全耦合进行。本文针对亚声速平面叶栅的反命题,根据泛函的驻值必要条件,介绍了变域变分有限元方法的求解过程,最后给出了两个数值算例。这两个算例均采用四节点矩形单元的插值基函数,第一个算例用于检验程序的可靠性,第二个算例设计了一个给定叶面马赫数分布的叶型,并与试验结果进行对照。  相似文献   

6.
流体动力系统激波的数值模拟   总被引:1,自引:0,他引:1  
本文为了对流体动力系统含有激波的跨音速流动进行数值模拟,给出了曲线坐标系下的LU-AUSMLW算法。该算法综合利用了AUSMPW格式与LU-SGS方法的优点。本文通过采用三阶MUSCL格式获得高阶精度。为了验证该算法的精度,对通道和叶栅中含有激波的跨音速流动进行了数值模拟。本文数值试验的计算结果与文献计算结果相符很好。  相似文献   

7.
跨音速流动是以同时存在亚、超音速流动并伴随激波为特征的,从数学的角度来看,跨音速流动的特性必须用在亚音速区为椭圆型,而在超音速区为双曲型的“混合”微分方程的解来描述.这类方程是非线性的,其解通常包含间断面——激波.处理有嵌入激波的跨音速流动的最好方法是有限差分松弛迭代法,虽然首次用松弛法解跨音速流动的是Emmons,但因他是用Rankine-Hugoniot关系式装配激波的,所以没有得到普遍应用,Murman和Cole提出的自动计算激波的有限差分松弛法,为计算跨音速绕流流场开辟  相似文献   

8.
无网格算法在多段翼型流动计算中的应用   总被引:5,自引:1,他引:5  
研究了一种求解欧拉方程的无网格算法,发展出了一套布点及点云自动生成的方法;在点云离散的基础上,采用最小二乘法求解矛盾方程的方法来求取空间导数,进而获得数值通量;采用四步龙格-库塔方法进行时间推进,并引入当地时间步长和残值光顺等加速收敛措施。通过对NA-CA0012翼型的跨音速流动和多段翼型复杂绕流的数值模拟,验证了上述无网格算法的正确性和实用性。  相似文献   

9.
伍贻兆  杨岞 《力学学报》1990,22(3):257-265
本文利用渐近展开匹配法分析钝头翼型的跨音速绕流,导出了描述前缘附近流动的一级近似、二级近似下的速位方程、边界条件及相应的近似解析解,并构成关于翼表面速度的一致有效合成解,消除了跨音速小扰动近似的前缘奇性,对于大展弦比后掠翼绕流,可利用翼型绕流分析结果,消除机翼前缘奇性。  相似文献   

10.
针对新设计的超临界翼型,采用风洞实验方法验证和评估了其气动特性。在增压连续式跨音速风洞(NF-6风洞)开展了超临界翼型跨音速特性的实验研究,验证了该翼型设计的压力分布曲线特点。激波位置和波后压力平台区长度表明设计结果和实验结果基本一致,揭示了超临界翼型跨音速的气动特性;阻力发散马赫数达到期望的设计指标,探讨了雷诺数对该翼型气动特性的影响。最后采用升华法实现了翼型表面流动特性的显示。结果表明转捩点约在16%弦长位置。  相似文献   

11.
A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity vector is split into the gradient of a potential and a rotational component. The approach takes advantage of the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are important only in a thin shear layer and therefore solution of the full equations may not be needed everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a potential model is a good approximation in the flow core. The rotational part of the flow can then be calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results are presented for turbulent transonic internal choked flows.  相似文献   

12.
Different models for inviscid transonic flows are examined. The common assumptions that the flow is isentropic and irrotational are critically evaluated. Entropy and vorticity correction procedures for potential and stream function formulations are presented, together with the details of the treatment of shocks and wakes, and drag and lift calculations. The non-uniqueness problem of the potential formulation is studied using different artificial viscosity forms. Numerical results are compared with Euler solutions.  相似文献   

13.
In this paper we derive the equations of the second and third approximations for the stream function of two-dimensional and axisymmetric potential transonic flow of an inviscid gas and find their particular solutions corresponding to certain transonic flows.A similar study concerning the second approximation of subsonic and supersonic flow was made by Van Dyke [1] and Hayes [2]. The second approximation for the velocity potential of transonic flow has been examined in detail by Hayes [3]. Euvrard [4, 5] has investigated the asymptotic behavior of transonic flow far from a body, while Fal'kovich, Chernov, and Gorskii [6] have studied the flow in a nozzle throat.The transonic asymptotic analysis for the stream function is presented in this paper.  相似文献   

14.
In this work a study of the application of the finite element method to transonic flows in axial turbomachines is undertaken. Solution techniques capable of accurately predicting flows from the incompressible regime up to the establishment of shocks in the transonic regime are presented. In the subsonic and shockless transonic regimes a local linearization method capable of very rapid convergence is used. In the full transonic regime the artificial compressibility method is employed to exclude downstream influences in the supersonic regions. The two approaches can be combined in a unified package and appropriate switches introduced to select the relevant method in any flow regime.  相似文献   

15.
The classical potential formulation of inviscid transonic flows is modified to account for non-isentropic effects. The density is determined in terms of the speed as well as the pressure, which in turn is calculated from a second-order mixed-type equation derived via differentiating the momentum equations. The present model differs in general from the exact inviscid Euler equations since the flow is assumed irrotational. On the other hand, since the shocks are not isentropic, they are weaker and are placed further upstream compared to the classical potential solution. Furthermore, the streamline leaving the aerofoil does not necessarily bisect the trailing edge. Results for the present conservative calculations are presented for non-lifting and lifting aerofoils at subsonic and transonic speeds and compared to potential and Euler solutions.  相似文献   

16.
In this paper we study the validation of the new formulation (potential-stream vector) of the steady Euler equations in 2-D/3-D transonic lifting regime flow. This approach, which is based on the Helmholtz decomposition of a velocity vector field, is designed to extend the potential approximation of Euler equations for severe situations such as high transonic or rotational subsonic flows. Different results computed by a fixed point algorithm on the stream vector correction are shown and discussed by comparing them with those obtained by the full potential approach.  相似文献   

17.
The method in [1] has been extended to the case of rotational flow in this paper. A new method for dealing with the shock wave is presented. This method has the advantages of both the shock-fitting and the shock capturing methods. The direct problem and the mixed direct-inverse problem of the rotational flow in a transonic plane cascade at both design and off design conditions are solved, and the results show that the present method has rapid convergence rate and high accuracy even for the flow with moderately strong shocks. The calculations have been carried out on the DPS-8 computer, and for the direct problem, only 50–80 iterations are needed, and 50–80 seconds of CPU time are required.  相似文献   

18.
The effect of transonic flow nonuniformity on the profiling of optimal plug nozzles is studied in the inviscid gas approximation. Sonic and supersonic regions providing maximum thrust for given nozzle dimensions and a given outer pressure are designed for given subsonic contours and calculated nonuniform transonic flows. As in the case of uniform flow on a cylindrical sonic surface, the initial regions of the designed contours satisfy the condition that in these regions the flow Mach number is unity or near-unity. In all the examples calculated, the optimal plug nozzles produce a greater thrust than the optimal axisymmetric and annular nozzles with a near-axial flow for the same lengths and the same gas flow rates through the nozzle. It is established that contouring without regard for transonic flow nonuniformity can result in considerable thrust losses. However, these losses are due only to a decrease in the flow rate, while the specific thrust may even increase slightly.  相似文献   

19.
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique in the class of piecewise C 1 smooth functions, under appropriate conditions on the downstream subsonic flows: (i) the normal transonic shocks in a straight duct with finite or infinite length, after fixing a point the shock-front passing through; (ii) the oblique transonic shocks attached to an infinite wedge; (iii) a flat Mach configuration containing one supersonic shock, two transonic shocks, and a contact discontinuity, after fixing a point where the four discontinuities intersect. These special solutions are constructed traditionally under the assumption that they are piecewise constant, and they have played important roles in the studies of mathematical gas dynamics. Our results show that the assumption of a piecewise constant can be replaced by some weaker assumptions on the downstream subsonic flows, which are sufficient to uniquely determine these special solutions. Mathematically, these are uniqueness results on solutions of free boundary problems of a quasi-linear system of elliptic-hyperbolic composite-mixed type in bounded or unbounded planar domains, without any assumptions on smallness. The proof relies on an elliptic system of pressure p and the tangent of the flow angle w = v/u obtained by decomposition of the Euler system in Lagrangian coordinates, and a newly developed method for the L estimate that is independent of the free boundaries, by combining the maximum principles of elliptic equations, and careful analysis of the shock polar applied on the (maybe curved) shock-fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号