首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isopropyl-thiazole ((iPr)Th) represents a new addition to the building blocks of nucleic acid minor groove-binding molecules. The DNA decamer duplex d(CGACTAGTCG)(2) is bound by a short lexitropsin of sequence formyl-PyPy(iPr)Th-Dp (where Py represents N-methyl pyrrole, (iPr)Th represents thiazole with an isopropyl group attached, and Dp represents dimethylaminopropyl). NMR data indicate ligand binding in the minor groove of DNA to the sequence 5'-ACT(5)AG(7)T-3' at a 2:1 ratio of ligand to DNA duplex. Ligand binding, assisted by the enhanced hydrophobicity of the (iPr)Th group, occurs in a head-to-tail fashion, the formyl headgroups being located toward the 5'-ends of the DNA sequence. Sequence reading is augmented through hydrogen bond formation between the exocyclic amine protons of G(7) and the (iPr)Th nitrogen, which lies on the minor groove floor. The B(I)/B(II) DNA backbone equilibrium is altered at the T(5) 3'-phosphate position to accommodate a B(II) configuration. The ligands bind in a staggered mode with respect to one another creating a six base pair DNA reading frame. The introduction of a new DNA sequence-reading element into the recognition jigsaw, combined with an extended reading frame for a small lexitropsin with enhanced hydrophobicity, holds great promise in the development of new, potentially commercially viable drug lead candidates for gene targeting.  相似文献   

2.
Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated.  相似文献   

3.
Sac7d is a small, thermostable protein that induces large helical deformations in DNA upon association. Starting from multiple initial placements of the unbound Sac7d structure relative to a B‐DNA oligonucleotide, molecular dynamics (MD) simulations were employed to directly follow several successful binding events at atomic resolution that resulted in structures in close agreement with the native complex geometry. The final native complex formed rapidly within tenths of nanoseconds and included simultaneous large‐scale kinking, groove opening, twisting, and intercalation in the target DNA. The simulations indicate that the complex formation process involves initial non‐native contacts that helped in reaching the final bound state, with residues intercalated at the center of the kinked DNA. It was also possible to identify several long‐lived trapped intermediate states of the binding process and to follow sliding processes of Sac7d along the DNA minor groove.  相似文献   

4.
《印度化学会志》2022,99(4):100391
Metal complexed anticancer agents interact with DNA nucleobase pairs (AT and GC) through different types of binding mode such as intercalation, groove binding, covalent binding, etc. Minor and major groove binding mechanism of DNA base pair is the key factor for all kinds of anticancer agent; as metal complexes have a great affinity to bind with DNA nucleobase either through minor or major groove. Ligands in metal complexes also play a vital role during the interaction with DNA base pairs; these ligands directly interact with DNA through different interacting modes. Generally, anticancer agents with less sterically hindered N-based aromatic and planar ligands are the key component for DNA binding; as the structure of such ligands are quite compatible for following intercalation and groove binding mechanism. Since, the experimental investigation for drug-DNA nucleobase complexes are extremely complicated, therefore; quantum mechanical calculations might be very helpful for computing the actual interactions in drug-DNA complexes. Quantum mechanical approaches such as density functional theory (DFT) might be a very important and useful tool to investigate the actual mode of interaction of metal complexed antitumor agents with DNA nucleobase. Herein, we have taken some metal complexes with N-based aromatic ligands as antitumor agents to investigate the proper mode of interaction between drug-DNA complexes.  相似文献   

5.
The conformational substates B(I) and B(II) of the phosphodiester backbone in B-DNA are thought to contribute to DNA flexibility and protein recognition. We have studied by rapid scan FTIR spectroscopy the isothermal B(I)-B(II) transition on its intrinsic time scale. Correlation analysis of IR absorption changes occurring within seconds after a reversible incremental growth of the DNA hydration shell identifies water populations w(1) (PO(2)(-)-bound) and w(2) (non-PO(2)(-)-bound) exhibiting weaker and stronger H-bonds, respectively, than those dominating in bulk water. The B(II) substate is stabilized by w(2). The water H-bond imbalance of 3-4 kJ mol(-1) is equalized at little enthalpic cost upon formation of a contiguous water network (at 12-14 H(2)O molecules per DNA phosphate) of reduced ν(OH) bandwidth. In this state, hydration water cooperatively stabilizes the B(I) conformer via the entropically favored replacement of w(2)-DNA interactions by additional w(2)-water contacts, rather than binding to B(I)-specific hydration sites. Such water rearrangements contribute to the recognition of DNA by indolicidin, an antimicrobial 13-mer peptide from bovine neutrophils which, despite little intrinsic structure, preferentially binds to the B(I) conformer in a water-mediated induced fit. The FTIR spectra resolve sequential steps leading from PO(2)(-)-solvation to substate transition and eventually to base stacking changes in the complex. In combination with CD-spectral titrations, the data indicate that, in the absence of a bulk aqueous phase, as in molecular crowded environments, water relocation within the DNA hydration shell allows for entropic contributions similar to those assigned to water upon DNA ligand recognition in solution.  相似文献   

6.
A new family of conjugates between a Zn(II)-tach complex and (indole)2 or benzofuran-indole amide minor groove binders connected through alkyl or oxyethyl linkers of different lengths has been prepared. The conjugates bind strongly to DNA. However, the complexation to DNA to promote the Zn(II) catalyzed hydrolytic cleavage of the DNA results instead in its inhibition. This inhibition effect has been confirmed also using Cu(II). Modeling studies suggest that in the most stable complex conformation, the minor groove binder and the linker lie in the minor groove hampering the interaction between the metal complex and the phosphate backbone of DNA. Therefore, the linear arrangement of minor groove binder-linker-metal complex appears to be effective to ensure tight binding but unproductive from a hydrolytic point of view.  相似文献   

7.
Methylated DNA bases are natural modifications which play an important role in protein-DNA interactions. Recent experimental and theoretical results have shown an influence of the base modification on the conformational behavior of the DNA backbone. MD simulations of four different B-DNA dodecamers (d(GC)(6), d(AT)(6), d(G(5mCG)(5)C), and d(A(T6mA)(5)T)) have been performed with the aim to examine the influence of methyl groups on the B-DNA backbone behavior. An additional control simulation of d(AU)(6) has also been performed to examine the further influence of the C5-methyl group in thymine. Methyl groups in the major groove (as in C5-methylcytosine, thymine, or N6-methyladenine) decrease the BII substate population of RpY steps. Due to methylation a clearer distinction of the BI substate stability between YpR and RpY (CpG/GpC or TpA/ApT) steps arises. A positive correlation between the BII substate population and base stacking distances is seen only for poly(GC). A methyl group added into the major groove increases mean water residence times around the purine N7 atom, which may stabilize the BI substate by improving the hydration network between the DNA backbone and the major groove. The N6-methyl group also forms a water molecule bridge between the N6 and O4 atoms, and thus further stabilizes the BI substate.  相似文献   

8.
We have reported previously that 9-methoxycamptothecin (MCPT) showed significant antitumor activity in vitro. Here, agarose gel electrophoresis experiments were performed to evaluate MCPT’s unwinding ability toward plasmid DNA and inhibitory activities against topoisomerases (Topo) I and II. Binding properties of MCPT to calf thymus DNA (CT-DNA) were evaluated by UV–vis, melting temperature, fluorescence, circular dichroism methodologies and molecular docking technique. Results showed that MCPT at 100 μM inhibited Topo I activity, but had no effect on Topo II. Studies on the binding properties indicated that minor groove binding was the most probable binding mode of MCPT to DNA. The abilities of MCPT to act as Topo I inhibitor and minor groove binding agent may be related to its strong antitumor activity.  相似文献   

9.
Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form.  相似文献   

10.
11.
Respinomycin D is a member of the anthracycline family of antitumour antibiotics that interact with double stranded DNA through intercalation. The clinical agents daunomycin and doxorubicin are the most well-studied of this class but have a relatively simple molecular architecture in which the pendant daunosamine sugar resides in the DNA minor groove. Respinomycin D, which belongs to the nogalamycin group of anthracyclines, possesses additional sugar residues at either end of the aglycone chromophore that modulate the biological activity but whose role in molecular recognition is unknown. We report the NMR structure of the respinomycin D-d(AGACGTCT)2 complex in solution derived from NOE restraints and molecular dynamics simulations. We show that the drug threads through the DNA double helix forming stabilising interactions in both the major and minor groove, the latter through a different binding geometry to that previously reported. The bicycloaminoglucose sugar resides in the major groove and makes specific contacts with guanine at the 5'-CpG intercalation site, however, the disaccharide attached at the C4 position plays little part in drug binding and DNA recognition and is largely solvent exposed.  相似文献   

12.
Hairpin pyrrole-imidazole polyamides are synthetic ligands that bind in the minor groove of DNA with affinities and specificities comparable to those of DNA binding proteins. Three polyamide-camptothecin conjugates 1-3 with linkers varying in length between 7, 13, and 18 atoms were synthesized to trap the enzyme Topoisomerase I and induce cleavage at predetermined DNA sites. One of these, polyamide-camptothecin conjugate 3 at nanomolar concentration (50 nM) in the presence of Topo I (37 degrees C), induces DNA cleavage between three and four base pairs from the polyamide binding site in high yield (77%).  相似文献   

13.
Dinuclear azole-bridged Pt compounds bind to DNA helices, forming intrastrand crosslinks between adjacent guanines in a similar way to cisplatin. Their cytotoxic profile is, however, different from that of first and second generation Pt drugs in that they lack cross resistance in cisplatin-resistant cell lines. In contrast to cisplatin, which induces a large kink in DNA duplex, structural NMR studies and molecular dynamics simulations have shown that azole-bridged diplatinum compounds induce only small structural changes in double-stranded DNA. These structural differences have been invoked to explain the different cytotoxic profile of these compounds. Here, we show that in addition to the small structural changes in DNA, dinuclear Pt compounds also affect DNA minor groove flexibility in a different way than cisplatin. Free-energy calculations on azole-bridged diplatinum DNA adducts reveal that opening of the minor groove requires a higher free-energy cost (DeltaG ~ 7-15 kcal/mol) than in the corresponding cisplatin-DNA adduct (DeltaG ~ 0 kcal/mol). This could prevent minor groove binding proteins from binding to diplatinum-DNA adducts thus leading to a different cellular response than cisplatin and possibly decreasing the activity of excision repair enzymes. Although the development of drug resistance is a highly complex mechanism, our findings provide an additional rationale for the improved cytotoxic activity of these compounds in cell lines resistant to cisplatin.  相似文献   

14.
Binuclear polypyridine ruthenium compounds have been shown to slowly intercalate into DNA, following a fast initial binding on the DNA surface. For these compounds, intercalation requires threading of a bulky substituent, containing one RuII, through the DNA base‐pair stack, and the accompanying DNA duplex distortions are much more severe than with intercalation of mononuclear compounds. Structural understanding of the process of intercalation may greatly gain from a characterisation of the initial interactions between binuclear RuII compounds and DNA. We report a structural NMR study on the binuclear RuII intercalator Λ,Λ‐B (Λ,Λ‐[μ‐bidppz(bipy)4Ru2]4+; bidppz=11,11′‐bis(dipyrido[3,2‐a:2′,3′‐c]phenazinyl, bipy = 2,2′‐bipyridine) mixed with the palindromic DNA [d(CGCGAATTCGCG)]2. Threading of Λ,Λ‐B depends on the presence and length of AT stretches in the DNA. Therefore, the latter was selected to promote initial binding, but due to the short stretch of AT base pairs, final intercalation is prevented. Structural calculations provide a model for the interaction: Λ,Λ‐B is trapped in a well‐defined surface‐bound state consisting of an eccentric minor‐groove binding. Most of the interaction enthalpy originates from electrostatic and van der Waals contacts, whereas intermolecular hydrogen bonds may help to define a unique position of Λ,Λ‐B. Molecular dynamics simulations show that this minor‐groove binding mode is stable on a nanosecond scale. To the best of our knowledge, this is the first structural study by NMR spectroscopy on a binuclear Ru compound bound to DNA. In the calculated structure, one of the positively charged Ru2+ moieties is near the central AATT region; this is favourable in view of potential intercalation as observed by optical methods for DNA with longer AT stretches. Circular dichroism (CD) spectroscopy suggests that a similar binding geometry is formed in mixtures of Λ,Λ‐B with natural calf thymus DNA. The present minor‐groove binding mode is proposed to represent the initial surface interactions of binuclear RuII compounds prior to intercalation into AT‐rich DNA.  相似文献   

15.
16.
The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by "in silico footprinting". Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory after energy minimization, the preferred binding site can be identified. We show application to all known noncovalent binding modes, namely 1:1 ligand:DNA binding (including hairpin ligands) and 2:1 side-by-side binding, with various DNA base pair sequences and show excellent agreement with experimental results from X-ray crystallography, NMR, and gel-based footprinting.  相似文献   

17.
Stable and accurate molecular dynamics (MD) of B‐DNA duplexes can be obtained in inexpensive computational conditions where only the minor groove is filled with water while the bulk solvent is represented implicitly. This model system presents significant theoretical as well as practical interest because, due to its simplicity and exceptional computational performance, it can be employed in simulations of very long DNA fragments. To better understand its properties and clarify the physical background of the effects produced by the limited water shell, dynamics of several different DNA oligomers was studied. It is found that optimal simulation conditions are reached when the explicit water is confined within the minor groove while the major groove is cleaned periodically. The internal solvent mobility appears high enough to observe in the nanosecond time scale spontaneous formation of sequence‐specific hydration patterns known from experiments. It is shown that the model produces stable MD trajectories close to the B‐DNA form regardless of the base pair sequence and that, on the other hand, the dynamics are strongly sequence dependent. Independent observations suggest that B‐DNA with only minor groove hydrated resembles its natural thermodynamic state at low water concentration; therefore, this model system can be tentatively called “minimal B‐DNA.” © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 457–467, 2001  相似文献   

18.
A number of studies indicate that DNA sequences such as AATT and TTAA have significantly different physical and interaction properties. To probe these interaction differences in detail and determine the influence of charge, we have synthesized three bisbenzimidazole derivatives, a diamidine, DB185, and monoamidines, DB183 and DB210, that are related to the well-known minor groove agent, Hoechst 33258. Footprinting studies with several natural and designed DNA fragments indicate that the synthetic compounds bind at AT sequences in the minor groove and interact more weakly at sites with TpA steps relative to sites without such steps. Circular dichroism spectroscopy also indicates that the compounds bind in the DNA minor groove. Surprisingly, Tm studies as a function of ratio indicate that the monoamidines bind to TTAA sequences as dimers, whereas the diamidine binds as a monomer. Biosensor-surface plasmon resonance (SPR) studies allowed us to quantitate the interaction differences in more detail. SPR results clearly show that the monoamidine compounds bind to the TTAA sequence in a cooperative 2:1 complex but bind as monomers to AATT. The dication binds to both sequences in monomer complexes but the binding to AATT is significantly stronger than binding to TTAA. Molecular dynamics simulations indicate that the AATT sequence has a narrow time-average minor groove width that is a very good receptor site for the bisbenzimidazole compounds. The groove in TTAA sequences is wider and the width must be reduced to form a favorable monomer complex. The monocations thus form cooperative dimers that stack in an antiparallel orientation and closely fit the structure of the TTAA minor groove. The amidine groups in the dimer are oriented in the 5' direction of the strand to which they are closest. Charge repulsion in the dication apparently keeps it from forming the dimer. It instead reduces the TTAA groove width, in an induced fit process, sufficiently to form a minor groove complex. The dimer-binding mode of DB183 and DB210 is a new DNA recognition motif and offers novel design concepts for selective targeting of DNA sequences with a wider minor groove, including those with TpA steps.  相似文献   

19.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

20.
特异性识别DNA的吡咯-咪唑多聚酰胺的研究进展   总被引:1,自引:0,他引:1  
卢丽萍  朱苗力  杨频 《化学进展》2004,16(3):422-430
吡咯-咪唑多聚酰胺为一类人工合成的主要由五元杂环化合物N-甲基吡咯(Py)、N-甲基咪唑(Im)和N-甲基3-羟基吡咯(Hp)芳香氨基酸组成的,经酰胺键连接的人工小分子配体.它们具有与天然DNA结合蛋白相媲美的DNA特异性识别和结合能力.近20年来,对此类化合物的研究取得了重要进展,确定了简单的氨基酸对识别碱基对的规则,研究了多种方式连接的吡咯-咪唑多聚酰胺与DNA小沟结合模式,合成了多种双功能吡咯-咪唑多聚酰胺,且吡咯-咪唑多聚酰胺能穿过细胞膜,具有在体内外调节基因表达的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号