首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

2.
Lin YW  Liu CW  Chang HT 《Talanta》2011,84(2):324-329
We have developed a fluorescence technique for the detection of Hg2+ and Pb2+ ions using polythymine (T33)/benzothiazolium-4-quinolinium dimer derivative (TOTO-3) and polyguanine (G33)/terbium ions (Tb3+) conjugates, respectively. Hg2+ ions induce T33 to form folded structures, leading to increased fluorescence of the T33/TOTO-3 conjugates. Because Pb2+ ions compete with Tb3+ ions to form complexes with G33, the extent of formation of the G33-Tb3+ complexes decreases upon increasing the Pb2+ concentration, leading to decreased fluorescence at 545 nm when excited at 290 nm. To minimize interference from Hg2+ ions during the detection of Pb2+ ions, we conducted two-step fluorescence measurements; prior to addition of the G33/Tb3+ probe, we recorded the fluorescence of a mixture of the T33/TOTO-3 conjugates and Hg2+ ions. The fluorescence signal obtained was linear with respect to the Hg2+ concentration over the range 25.0-500 nM (R2 = 0.99); for Pb2+ ions, it was linear over the range 3.0-50 nM (R2 = 0.98). The limits of detection (at a signal-to-noise ratio of 3) for Hg2+ and Pb2+ ions were 10.0 and 1.0 nM, respectively. Relative to other techniques for the detection of Hg2+ and Pb2+ ions in soil and water samples, our present approach is simpler, faster, and more cost-effective.  相似文献   

3.
Rhodamine-based chemosensors 1 and 2 were synthesized and self-assembled onto glass surfaces for the selective fluorescent sensing of Pb2+. The immobilized chemosensors showed fluorescent responses that were turned-on with Pb2+ in CH3CN, selectively over various metal ions. The Pb2+-selective fluorescent switch of the immobilized chemosensors was also reversible, allowing for repeated use for Pb2+ detection.  相似文献   

4.
In order to explore the reuse properties of oxidized chelating resin containing sulfur after adsorption, two kinds of novel chelating resins, poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfoxide (PVBSO) and poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfone (PVBSO2), were synthesized using poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfide (PVBS) as material. Their structures were confirmed by FTIR and XPS. The adsorption properties and mechanism for metal ions such as Au3+, Pt4+, Pd2+, Hg2+, Cu2+, Ni2+, Fe3+, Pb2+, Cd2+, and Zn2+ were investigated. Experimental results showed that PVBSO had good adsorption and selective properties for Au3+, Pd2+ and Cu2+ when the coexisting ion was Pt4+, Ni2+, Pb2+ or Cd2+. In the aqueous system containing Cu2+ and Pb2+ or Cu2+ and Cd2+, PVBSO2 only adsorbed Cu2+. The selective coefficients of PVBSO and PVBSO2 were αAu/Pt = 4.8, αAu/Pd = 11.8, αPd/Pt = 10.9, αCu/Ni = 2.5, αCu/Cd = 41.2, αCu/Pb = ∞, αCu/Ni = 3.0, αCu/Cd = ∞, αCu/Pb = ∞, respectively.  相似文献   

5.
Stability constants in methanol at 25.0°C were evaluated for the complexes of the divalent cations Ca2+, Ni2+, Zn2+, Pb2+, Mg2+, Co2+ and Cu2+ with the macrocyclic polyethers 15-crown-5 (15C5), 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6) and dibenzo-24-crown-8 (DB24C8). The log K values of the 1:1 complexes were generally in the range 2.1–4.2, which is low in comparison to the values of the corresponding crown ether/alkali metal ion complexes. M2L complexes were observed for the systems Pb2+/18C6, Pb2+/DC18C6, Ca2+/DC18C6 and Cu2+/D18C6, whereas ML2 complexes were found for Ca2+/18C6 and Cu2+/18C6. Within the series of complexes studied, there was no clear relationship between cation diameter and hole size.  相似文献   

6.
Alginic acid (AA) is a natural polysaccharide derived from brown algae. Naturally AA is present in cellular wall forming insoluble complexes with ions as calcium, magnesium, and sodium. This polymer is composed of uronic acids as d-manuronic acid and l-guloronic acid (units differing in C5 configuration) which are disposed in blocks or alternating on principal chain due its spatial configuration. In its structure only hydroxy and carboxylic acid are present, with a pKa alginic acid = 3.45. At pH = 4.3 this polymer is completely soluble in water. Metal ion retention was evaluated using liquid-phase polymer-based retention (LPR) technique elution method, and metal ions studied were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ at different pH and filtration factor. A high efficiency for all metal ions at all pH was reveled with a maximum at pH = 4.5 of 100% of majority of metal ions. To evaluate the maximum retention capacity (MRC) of AA, LPR technique concentration method was used. Metal ion/polymer ratio from 48 to 325 mg/g for Zn2+ and Ag+ were studied, respectively. Homopolymer and polymer-metal ion complexes were characterized using FT-IR, Far-IR spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis. FT-IR revealed relevant shifts between AA and PMC, which involve carboxylic acid, hydroxy, and ether groups. DLS shows non-pH-dependent sizes of alginic acid-silver complexes.  相似文献   

7.
The crystal structures of Pb2+ ion-exchanged hydroxyapatite (OHAp), chlorapatite (ClAp), and fluorapatite (FAp) in aqueous solutions with low pH value of 3.0 or 4.0 have been investigated by X-ray powder pattern-fitting methods. The site occupancy factors of Pb atoms for the M1 (column site) and M2 sites were determined to be 0.72 and 0.77 for Pb7.5Ca2.5OHAp, 0.69 and 0.86 for Pb7.9Ca2.1ClAp, and 0.60 and 0.52 for Pb5.5Ca4.5FAp, respectively. These results imply that Ca2+ ions in calcium hydroxyapatite are exchanged for Pb2+ ions in acidic aqueous solution regardless of whether they occupy M1 or M2 sites.  相似文献   

8.
Jeong T  Lee HK  Jeong DC  Jeon S 《Talanta》2005,65(2):543-548
PVC membrane electrodes for lead ion based on N,N’-bis(salicylidene)-2,6-pyridinediamine as membrane carrier were prepared. Among their membranes, a membrane electrode (m-3) containing o-NPOE as a plasticizer and 50 mol% additive displays an excellent Nernstian response (29.4 mV/decade) and the limit of detection of −log a (M) = 6.04 to Pb2+ in Pb(NO3)2 solutions at room temperature. It has a rapid response time within 10 s over the entire concentration range. The proposed electrode revealed good selectivity and response for Pb2+ over a wide variety of other metal ions in a pH 5.0 buffer solutions, and good reproducibility of base line in subsequent measurements.  相似文献   

9.
The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb2+ and Cd2+ during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb2+ and Cd2+, with the calculated detection limits of 1.4 × 10−11 M and 9.2 × 10−11 M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb2+ (or Cd2+) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb2+ and Cd2+ in aqueous effluent.  相似文献   

10.
A sensitive optode consisting of highly lead-selective ionophore (Lead IV), proton-selective chromoionophore (ETH 5294) and lipophilic anionic sites (KTpClPB) in plasticized polyvinyl chloride (PVC) membrane was fabricated. The optode membranes were used for determination of Pb2+ by absorption spectrophotometry in batch and flow-through systems. The influence parameters such as pH, type of buffer solution, response time and concentration of regenerating solution were optimized. The membrane responded to Pb2+ by changing its color from blue to pinkish purple in Tris buffer containing different concentration of Pb2+ at pH 7.0. The optode provided the response range of 3.16 × 10−8 to 5.00 × 10−5 mol L−1 Pb2+ with the detection limit of 2.49 × 10−8 mol L−1 in the batch system within the response time of 30 min. The dynamic range of 1.26 × 10−8 to 3.16 × 10−5 mol L−1 Pb2+ with detection limit of 8.97 × 10−9 mol L−1 were obtained in the flow-through system within the response time of 15 min. Moreover, the proposed optode sensors showed good selectivity towards Pb2+ over Na+, K+, Mg2+, Cd2+, Hg2+ and Ag+. It was successfully applied to determine Pb2+ in real water samples and the results were compared with well-established inductively coupled plasma optical emission spectrometry (ICP-OES). No significant different value (tcritical = 4.30 > texp = 1.00-3.42, n = 3 at 95% of confidence level) was found.  相似文献   

11.
Halogen vacancies are regarded to play a vital role in photo-induced phase segregation and the resulting switchable emission colors in the soft mixed-halide perovskites; however, its control strategy via the balanced Pb0 defects remains a big challenge. The research reports the regulation of synthesis and photochromic behavior via interfacial Eu3+/Eu2+-Pb0/Pb2+ redox in composites of porous Ca0.9Eu0.1MoO4 and nominal mixed-halide perovskite CsPbCl1.5Br1.5. The composite takes full advantage of Eu3+ ions with the concerns of its luminescence and variable valences. It provides an additional emission color besides the halide perovskite, manipulates the Pb0 defects and the resulting Br-rich domain via interfacial redox reaction in the composites. The more contents of surfaced Eu3+ caused by substituting the unequivalent Ca2+ ions and the high volume-to-surface ratio of the porous Ca0.9Eu0.1MoO4 guarantees the interfacial access for the Eu3+ and the halides. The research provides some perspectives on the regulation of ionic valence and photoluminescence of halide perovskites with the use of lanthanide ions. The composites may find potential applications in the anti-counterfeiting field.  相似文献   

12.
A new alizarin based azacrown ether N-(alizarin-4-methylene)-4-azadibenzo-18-crown-6 (AMADCE) was synthesized, for the transportation of fluoride ions, by reacting 4-aza dibenzo 18-crown-6 with alizarin in the presence of formaldehyde. The compound forms a stable purple-red coloured complex with Zr(IV) in 0.5-1.0 M hydrochloric acid and gets quantitatively extracted into diphenyl ether. This diphenyl ether extract of the Zr(IV) complex instantaneously transfers fluoride ions from the aqueous phase, which was utilised for the sensitive determination and transportation of fluoride ions through the liquid membrane. The conditions like concentration of membrane phase, acidity of the source phase and the receiving phase, and the transportation time were optimized. The continuous transportation of fluoride ions was achieved by adding receptor ions like La3+ and Ca2+ in the receiving phase. The rate constant K and t1/2 for the transportation were determined. The studies were extended for the removal of fluoride ions through the liquid membrane from the ground water samples and industrial effluent.  相似文献   

13.
14.
The minerals mimetite Pb5(AsO4)3Cl, arsenian pyromorphite Pb5(PO4,AsO4)3Cl and hedyphane Pb3Ca2(AsO4)3Cl have been studied by Raman spectroscopy complimented with infrared spectroscopy. Mimetite is characterised by a band at 812–3 cm−1 attributed to the Ag mode. For the arsenian pyromorphite this band is observed at 818 cm−1 and for hedyphane at 819 cm−1. For mimetite and hedyphane bands at 788 and 765 cm−1 are attributed to Au and E1u vibrational modes and are both Raman and infrared active. For the arsenian pyromorphite, Raman bands at 917–1014 cm−1 are attributed to phosphate stretching vibrations. Raman spectroscopy clearly identifies bands attributable to isomorphous substitution of arsenate by phosphate. The observation of low intensity bands in the 3200–3550 cm−1 region are assigned to adsorbed water and OH units, thus indicating some replacement of chloride ions with hydroxyl ions.  相似文献   

15.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

16.
17.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

18.
A novel chromogenic calix[4]arene 3, which has within a molecule both the triazoles and the hydroxyl azophenols as the metal-binding sites and the azophenol moiety as a coloration sites was designed and synthesized. Calix[4]arene 3 is highly sensitive to Ca2+ and Pb2+ ions, which can be detected by the naked eye. Furthermore, the association constants for the 1:1 complexes of 3·Ca2+ and 3·Pb2+ were determined to be 7.06 × 104 M−1 and 8.57 × 103 M−1, respectively.  相似文献   

19.
The complex formation constants of polyacrylic (PAA) ligands (1.4≤log N≤2.4, N=number of monomer units) with calcium and magnesium ions were determined in different ionic media at different ionic strengths, 0≤I≤1 mol l−1, at t=25 °C. Experimental pH-metric data in the presence of Ca2+ or Mg2+ were firstly analysed in terms of apparent protonation constants, log KH*, using the “three parameter model” proposed by Högfeldt; differences in log KH*, determined in different ionic media, were interpreted in terms of complex species formation. The only species present in the system M-PAA (M=Ca2+ or Mg2+) is ML2: attempts to find species of different stoichiometry were unsuccessful. The stability dependence of this species on ionic strength, on the degree of neutralisation (α) and on PAA molecular weight is discussed using empirical equations. The formation constant, log β2, is significantly higher for Ca2+ than for Mg2+: at I=0.1 mol l−1 (NaCl), log N=1.8 and α=0.5, log β2Ca=4.43 and log β2Mg=4.24. The formation of polyacrylate-alkaline earth metal complexes is discussed in the light of sequestering effects in natural waters.  相似文献   

20.
A green and facile method was developed to prepare a novel hybrid nanocomposite that consisted of one-dimensional multi-walled carbon nanotubes (MWCNTs) and two-dimensional graphene oxide (GO) sheets. The as-prepared three-dimensional GO–MWCNTs hybrid nanocomposites exhibit excellent water-solubility owing to the high hydrophilicity of GO components; meanwhile, a certain amount of MWCNTs loaded on the surface of GO sheets through π–π interaction seem to be “dissolved” in water. Moreover, the graphene(G)-MWCNTs nanocomposites with excellent conductivity were obtained conveniently by the direct electrochemical reduction of GO–MWCNTs nanocomposites. Seeing that there is a good synergistic effect between MWCNTs and graphene components in enhancing preconcentration efficiency of metal ions and accelerating electron transfer rate at G-MWCNTs/electrolyte interface, the G-MWCNTs nanocomposites possess fast, simultaneous and sensitive detection performance for trace amounts of heavy metal ions. The electrochemical results demonstrate that the G-MWCNTs nanocomposites can act as a kind of practical sensing material to simultaneously determine Pb2+ and Cd2+ ions in terms of anodic stripping voltammetry (ASV). The linear calibration plots for Pb2+ and Cd2+ ranged from 0.5 μg L−1 to 30 μg L−1. The detection limits were determined to be 0.2 μg L−1 (S/N = 3) for Pb2+ and 0.1 μg L−1 (S/N = 3) for Cd2+ in the case of a deposition time of 180 s. It is worth mentioning that the G-MWCNTs modified electrodes were successfully applied to the simultaneous detection of Cd2+ and Pb2+ ions in real electroplating effluent samples containing lots of surface active impurities, showing a good application prospect in the determination of trace amounts of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号