首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The plasticized polymer electrolyte composed of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymer, the mixture of ethylene carbonate and propylene carbonate as plasticizer, and LiCF3SO3 as a salt was studied. The effect of the PVC-to-PVdF blend ratio with the fixed plasticizer and salt content on the ionic conduction was investigated. The electrolyte films reveal a phase-separated morphology due to immiscibility of the PVC with plasticizer. Among the three blend ratios studied, 3:7 PVC–PVdF blend ratio has shown enhanced ionic conductivity of 1.47 × 10−5 S cm−1 at ambient temperature, i.e., the ionic conductivity decreased with increasing PVC-to-PVdF ratio and increased with increasing temperature. A temperature dependency on ionic conductivity obeys the Arrhenius behavior. The melting endotherms corresponding to vinylidene (VdF) crystalline phases are observed in thermal analysis. Thermal study reveals the different levels of uptake of plasticizer by VdF crystallites. The decrease in amorphousity with increase in PVC in X-ray diffraction studies and larger pore size appearance for higher content of PVC in scanning electron microscopy images support the ionic conductivity variations with increase in blend ratios.  相似文献   

2.
A series of gel polymer electrolytes containing PVdF as homo polymer, a mixture of 1:1 Ethylene Carbonate (EC) : Propylene Carbonate (PC) as plasticizer and lithium-bistrifluoromethane sulphone imide [imide — LiN (CF3SO2)2] has been developed. Amounts of polymer (PVdF), plasticizer and the imide lithium salt have been varied as a function of their weight ratio composition in this regard. Dimensionally stable films possessing appreciable room temperature conductivity values have been obtained with respect to certain weight ratio compositions. However, conductivity data have been recorded at different possible temperatures, i.e., from 20 °C to 65 °C. XRD and DSC studies were carried out to characterize the polymer films for better amorphicity and reduced glass transition temperature, respectively. The electrochemical interface stability of the PVdF based gel polymer electrolytes over a range of storage period (24 h – 10 days) have been investigated using A.C. impedance studies. Test cells containing Li/gel polymer electrolyte (GPE)/Li have been subjected to undergo 50 charge-discharge cycles in order to understand the electrochemical performance behaviour of the dimensionally stable films of superior conductivity. The observed capacity fade of less than 20% even after 50 cycles is in favour of the electrochemical stability of the gel polymer electrolyte containing 27.5% PVdF −67.5 % EC+PC −5% imide salt. Cyclic voltammetry studies establish the possibility of a reversible intercalation — deintercalation process involving Li+ ions through the gel polymer electrolyte.  相似文献   

3.
Solvent-free, lithium-ion-conducting, composite polymer electrolytes have been prepared by a double dispersion of an anion trapping compound, i.e., calyx(6)pyrrole, CP and a ceramic filler, i.e., super acid zirconia, S-ZrO2 in a poly(ethylene oxide)-lithium bis(oxalate) borate, PEO–LiBOB matrix. The characterization, based on differential thermal analysis and electrochemical analysis, showed that while the addition of the S-ZrO2 has scarce influence on the transport properties of the composite electrolyte, the unique combination of the anion-trapping compound, CP, with the large anion lithium salt, LiBOB, greatly enhances the value of the lithium transference number without depressing the overall ionic conductivity. These unique properties make polymer electrolytes, such as PEO20LiBOB(CP)0.125, of practical interest, as in fact confirmed by tests carried out on lithium battery prototypes.  相似文献   

4.
The gel polymer electrolytes composed of the blend of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymers, the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizer, and LiClO4 as a salt was studied. An attempt was made to investigate the effect of PVdF in the plasticized PVC + LiClO4 system in three blend ratios. The differential scanning calorimetry study confirms the formation of polymer–salt complex and miscibility of the PVC and PVdF. The X-ray diffraction results of plasticized PVC (S1, S2, S3) and PVdF-blended films (S4, S5, S6) were compared, in that an increase in PVC concentration decreases the degree of crystallinity for S1 and S3, respectively, but drastically increases for PVC (S2). The increase in PVC content has not accounted in the conductivity studies also noted. However, the blending effect of PVdF showed decreases in crystallinity homogeneously for (S6 > S5 > S4), which were reflected in ionic conductivity measurements. The surface morphology of the films were also studied by scanning electron microscope, and it corroborates the same. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

5.
Lithium bis(oxalate)borate (LiBOB) is a promising salt for lithium-ion batteries. However, it is necessary to exert the electrochemical performance of LiBOB by the appropriate solvent. With dimethyl sulfite (DMS) as mixed solvents, the electrochemical behavior of γ-butyrolactone (GBL) with LiBOB is studied in this paper. It shows that LiBOB-GBL/DMS electrolyte has high oxidation potential (>5.3 V) and satisfactory conductivities. When used in lithium and mesophase carbon microbead cells, the novel electrolyte exhibits not only excellent film-forming characteristics but also low impedances of the interface films. Besides, when used in LiFeO4/Li cells, compared to the cell with the electrolyte system of 1 mol L?1 LiPF6–ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v), LiBOB-based electrolyte exhibits several advantages, such as more stable cycle performance at room temperature and higher mean voltage.  相似文献   

6.
The blend-based polymer electrolyte comprising poly(vinyl chloride) (PVC) and poly(ethylene glycol) (PEG) as host polymer and lithium bis(perfluoroethanesulfonyl)imide as complexing salt have been prepared. Ethylene carbonate and dimethyl carbonate (50:50 v/v) are used as plasticizer for the system. The barium titanate is used as a filler, and the ratio of (PEG:BaTiO3) is varied to study its effect on the conductivity behavior of the electrolyte. XRD and ac impedance studies are carried out on the prepared samples. The ac impedance measurements show that the conductivity of the prepared samples depends on the (PEG:BaTiO3) ratio, and its value is higher for (15:5) wt.% of (PEG:BaTiO3)-incorporated film. The temperature dependence of the conductivity of the polymer films obeys VTF relation. The role of ferroelectric filler in enhancing the conductivity is studied. The thermal stability of the film is ascertained from TG/DTA studies. The phase morphological study reveals that the porous nature of the polymer electrolyte membranes depends on the (PEG:BaTiO3) ratio.  相似文献   

7.
Electrodeposition of aluminum from ionic liquids has been considered a promising approach to low-temperature aluminum electrolysis. In this study, we first investigated the electrochemical stability of 1-ethyl-3-methylimidazolium chloride ([Emim][Al2Cl7]) electrolyte, which is a typically used electrolyte for aluminum electrodeposition. It was found that part of imidazole ions decomposed on the cathode during the electrolysis process, especially when the temperature was at or over 353 K. In order to enhance the stability of the electrolyte, we further studied the effects of lithium salt and lithium bis(oxalato)borate (LiBOB), on the electrochemical stability of the [Emim][Al2Cl7] ionic liquid system. It was found that the electrochemical window of the electrolyte was broadened from 2.59 to 2.74 V at 373 K by addition of 1 mol% LiBOB. With the existence of LiBOB, the reduction current density of Al2Cl7 - increased before ?0.58 V and the electrodissolution of Al was more complete. The possible mechanism on the LiBOB increases the stability of the electrolyte systems also discussed based on our theoretical calculations.  相似文献   

8.
The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.  相似文献   

9.
Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al–Zn ferrite, Mg–Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO–7NH4SCN]: X ferrite (where X?=?2% in Al–Zn ferrite, 1% Mg–Zn ferrite, and 1% Zn ferrite) system.  相似文献   

10.
Lithium bis(oxalato)-borate (LiBOB) is a promising salt for Li-ion batteries owing to its various characteristics such as non-fluorine, non-toxicity, low cost, and safety. It has the unique merits such as the stability at high temperature and the film-forming characteristics in propylene carbonate (PC)-based electrolyte. In this work, the utilization of PC as the basal solvent and dimethyl carbonate, γ-butyrolactone and ethylene carbonate as co-solvents for LiBOB have been investigated. The results indicate that the co-solvent has conducive effects on the conductivities, viscosities, and battery performance. The conductivity and viscosity of 0.7 mol L−1 LiBOB in PC+GBL+EC+DMC (1:1:1:1, v/v) are 6.22 mS cm−1 and 3.74 mPa s, respectively, and it is very stable in 0–5 V range. The capacity of Li/LiFePO4 battery is about 160 mAh g−1 at 0.5 °C. Moreover, the battery has exhibited the excellent rate performance.  相似文献   

11.
New solid electrolytes containing acetamide and lithium bioxalato borate (LiBOB) with different molar ratios have been investigated. Their melting points (Tm) are around 42 °C. The ionic conductivities and activation energies vary drastically below and above Tm, indicating a typical feature of phase transition electrolyte. The ionic conductivity of the LiBOB/acetamide electrolyte with a molar ratio of 1:8 is 5 × 10? 8 S cm? 1 at 25 °C but increases to 4 × 10? 3 S cm? 1 at 60 °C. It was found that anode materials, such as graphite and Li4Ti5O12, could not discharge and charge properly in this electrolyte at 60 °C due to the difficulty in forming a stable passivating layer on the anodes. However, a Li/LiFePO4 cell with this electrolyte can be charged properly after heating to 60 °C, but cannot be charged at room temperature. Although the LiBOB/acetamide electrolytes are not suitable for Li-ion batteries due to poor electrode compatibility, the current results indicate that a solid electrolyte with a slightly higher phase transition temperature than room temperature may find potential application in stationary battery for energy storage where the electrolyte is at high conductive liquid state at elevated temperature and low conductive solid state at low temperature. The interaction between acetamide and LiBOB in the electrolyte is also studied by Raman and FTIR spectroscopy.  相似文献   

12.
The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress–strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10−3 S cm−1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.  相似文献   

13.

Dye-sensitized solar cells (DSSCs) offer an alternative to conventional silicon solar cell because of low cost and easy fabrication. However, one major drawback in DSSCs is their low efficiency. This paper reports the effect of using a binary iodide salt mixture with different size cations on the efficiency enhancement in dye sensitized solar cells based on polymer gel electrolytes. Several different polymers, such as polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), poly (vinylidenefluoride (PVdF)), and polyethylene oxide (PEO) have been used as host polymers. A binary iodide mixture consisting of an alkaline iodide salt (small cation) and a quaternary ammonium iodide salt such as tetrapropyl ammonium iodide (Pr4NI) (large cation) has been used as the iodide ion source. In some of these systems, efficiency enhancement of more than 25% has been reached due to the “mixed cation effect”. From these studies, it was established that the variation of the power conversion efficiency with the concentration ratio of the two iodide salts follows the same trend as the short circuit current density (J sc) and goes through a maximum at a particular salt concentration ratio. The maximum efficiency was found to be higher than the efficiencies of the DSSCs with only a single iodide salt in the electrolyte. The J sc in these DSSCs appears to be governed by the iodide ion conductivity of the gel electrolyte. The observed efficiency enhancement has been explained on the basis of the electrode effects as well as electrolyte effects where the cations play a dominant role.

  相似文献   

14.
S. Z. Yusof  H. J. Woo  A. K. Arof 《Ionics》2016,22(11):2113-2121
A polymer electrolyte system comprising methylcellulose (MC) as the host polymer and lithium bis(oxalato) borate (LiBOB) as the lithium ion source has been prepared via the solution cast technique. The electrolyte with the highest conductivity of 2.79 μS cm?1 has a composition of 75 wt% MC–25 wt% LiBOB. The mobile ion concentration (n) in this sample was estimated to be 5.70?×?1020 cm?3. A good correlation between ionic conductivity, dielectric constant, and free ion concentration has been observed. The ratio of mobile ion number density (n) at a particular temperature to the concentration n 0 of free ions at T?=?∞ (n/n 0) and the power law exponents (s) exhibit opposite trends when varied with salt concentration.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2437-2441
Thermally stable, flexible, and proton conductive composite sheets have been prepared from phosphosilicate (P2O5–SiO2, P/Si = 1 in mole ratio) gel powder and several kinds of organic polymers. The organic polymers examined were polyimide (PI), polyamideimide (PAI), polyvinylidene fluoride (PVdF) and styrene–ethylene–butylenes–styrene elastomer (SEBS). PI and PAI effectively improved the chemical durability of the composite sheets by depressing the leaching of phosphoric acid from the gel. PVdF and SEBS provided the composite sheets with an excellent flexibility. Fuel cells using the membrane electrode assembly (MEA) composed of the composite sheet as an electrolyte and Pt-loaded carbon paper sheets as electrodes operated at temperatures in the range from room temperature to medium temperatures (∼ 150 °C).  相似文献   

16.
To seek a promising candidate electrolyte at elevated temperature for lithium manganese oxide (LiMn2O4)/Li cells, the electrochemical performance of 0.7 mol L?1 LiBOB (lithium bis(oxalate)borate)-SL (sulfolane)/DEC (diethyl carbonate) (1:1, in volume) electrolyte was studied at 55 °C. The Mn dissolution in electrolyte was analyzed by inductively coupled plasma (ICP) analysis. AC impedance measurement and scanning electron microscopy (SEM) analysis were used to analyze the formation of the surface film on the LiMn2O4 electrode. The results demonstrate that the LiBOB-SL/DEC electrolyte can slow down the dissolution and erosion of Mn ions, and decrease the interface impedance. Moreover, the LiBOB-SL/DEC electrolyte could obviously improve the capacity retention, the operating voltage (4.05 V), and the rate performance of LiMn2O4/Li cells.  相似文献   

17.
The lithium salt (x) (x=LiAsF6, LiPF6) was complexed with a blend of poly(vinyl chloride) (PVC) / poly(methyl methacrylate)(PMMA) and plasticized with a combination of ethylene carbonate(EC) and propylene carbonate(PC). The electrolyte films were prepared using doctor blade method and subjected to ionic conductivity measurements at nine different temperatures viz.,-30, -15, 0, 15, 30, 40, 50, 60 and 70 °C. The films were also subjected to TG - DTA and FT-IR analysis. The effect of salt on ionic conductivity is discussed. A 75:25 PMMA/PVC blend at 60 % plasticizer content has been found to possess optimal properties in terms of ionic conductivity, thermal and electrochemical stability.  相似文献   

18.
The ZnO filler has been introduced into a solid polymeric electrolyte of polyvinyl chloride (PVC)–ZnO–LiClO4, replacing costly organic filler for conductivity improvement. Ionic conductivity of PVC–ZnO–LiClO4 as a function of ZnO concentration and temperature has been studied. The electrolyte samples were prepared by solution casting technique. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with ZnO concentration and temperature. The temperature dependence on the conductivity of electrolyte was modelled by Arrhenius and Vogel–Tammann–Fulcher equations, respectively. The temperature dependence on the conductivity does not fit in both models. The highest room temperature conductivity of the electrolyte of 3.7 × 10−7 Scm−1 was obtained at 20% by weight of ZnO and that without ZnO filler was found to be 8.8 × 10−10 Scm−1. The conductivity has been improved by 420 times when the ZnO filler was introduced into the PVC–LiClO4 electrolyte system. It was also found that the glass transition temperature of the electrolyte PVC–ZnO–LiClO4 is about the same as PVC–LiClO4. The increase in conductivity of the electrolyte with the ZnO filler was explained in terms of its surface morphology.  相似文献   

19.
Asok K. Dikshit 《Ionics》2018,24(1):153-161
Factors affecting the softening temperature of polymer gel electrolytes (PGEs) made from poly(vinylidene fluoride) (PVDF) have been investigated. The melting temperature transition has been found to rise with increased polymer concentration and salt concentration but reduced by solvent dielectric constant. The solvent dielectric constant was reduced by mixing propylene carbonate (PC) with the non-solvent phenyl propanol (PhP). The use of lithium salt bis(oxalate)borate (LiBOB) in place of lithium tetrafluroborote (LiBF4) gives further enhancement to the softening temperature of PGEs. In all of those cases, there is an eventual trade-off between increased softening temperature and reduced ionic conductivity, in this fabricated gel electrolyte. Here, a variety of ways to tailor the properties of PGEs for different applications has been shown.  相似文献   

20.
O. Mahendran  S. Rajendran 《Ionics》2003,9(3-4):282-288
Batteries using ionically conducting polymer membranes as electrolytes are very attractive, since the concept of power sources capable of combining a high energy content with plasticity is very appealing for the consumer electronics market and in electric vehicle applications. Blend based polymer electrolytes composed of poly (methylmethacrylate) (PMMA), Poly Vinylidene fluoride (PVdF), Lithium salt (LiX) (X=ClO4, BF4 and CF3SO3) and Dimethyl Phthalate (DMP) are prepared using solvent casting technique. The films have been characterized using XRD, FTIR, Thermal and SEM studies; the effect of complexing salt and temperature on ionic conductivity is also discussed. The maximum conductivity value obtained for the solid polymer electrolyte film at 303 K is 4.2 × 10−3 S/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号