首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reaction of hexakis(2-pyridyloxy)cyclotriphosphazene (L) and hexakis(4-methyl-2-pyridyloxy)cyclotriphosphazene (MeL) with copper(ii) chloride afford the complexes [CuLCl(2)], [(CuCl(2))(2)(MeL)], [CuLCl]PF(6) and [Cu(MeL)Cl]PF(6). The single-crystal X-ray structure of [CuLCl(2)] shows the copper ion to be in a square based pyramidal distorted trigonal bipyramidal (SBPDTBP) environment (tau= 0.47) with L acting as a kappa(3)N donor, coordinating via the nitrogen atoms from two non-geminal pyridyloxy pendant arms, a nitrogen atom in the phosphazene ring and two chloride ions. In the dimetallic complex, [(CuCl(2))(2)(MeL)], the geometry about both (symmetry related) copper(ii) centres is also SBPDTBP (tau= 0.57) with a 'N(3)Cl(2)' donor set. In the monocation of [CuLCl]PF(6), L acts as a kappa(5)N donor, bonding to the copper(ii) centre through the nitrogen atoms of four pyridyloxy pendant arms, a phosphazene ring nitrogen atom and a chloride ion to give an elongated rhombic octahedral coordination sphere. The phosphazene ring atoms remain virtually coplanar in all three structures as a consequence of the phenoxy-hinge, which links the pyridine pendant donors to the cyclotriphosphazene platform, allowing the formation of six-membered chelate rings. The spectroscopic (mass spectral, EPR and electronic) and magnetic properties of the complexes are discussed. The EPR and variable temperature magnetic susceptibility results for the dicopper complex, [(CuCl(2))(2)(MeL)], point to a very weak electronic interaction between the metal atoms.  相似文献   

2.
The reactivity of the metalloligand [Pt2(micro-S)2(PPh3)4] towards a variety of copper(II)-ligand systems has been studied. Reaction of [Pt2(mu-S)2(PPh3)4] with copper(II) halide complexes [CuCl2L](L = 2,2'-bipyridine and 1,10-phenanthroline) gave trinuclear dicationic products [Pt2(mu-S)2(PPh3)4CuL]2+, and the 8-hydroxyquinolinate (hq) complex [Cu(hq)2] gave [Pt2(mu-S)2(PPh3)4Cu(hq)]+, isolated as their BPh4- or PF6- salts. Related cationic complexes with other ancillary amine ligands (1,2-diaminoethane, 1,2-diaminopropane, 1,2-diaminocyclohexane) were obtained by reactions of [Pt2(mu-S)2(PPh3)4] with CuCl2 and the amine. In contrast, reaction of [Pt2(mu-S)2(PPh3)4] with CuCl2 and NH3 in methanol gave the intensely blue methoxy-bridged dicopper complex [{Pt(2)(mu-S)2(PPh3)4Cu(OMe)}2]2+, isolated as its hexafluorophosphate salt. Copper beta-diketonate complexes reacted with [Pt2(mu-S)2(PPh3)4] giving [Pt2(mu-S)2(PPh3)4Cu(beta-diketonate)]+PF6- complexes, with the CH3COCHCOCH3(acac) and CF3COCHCO(2-thienyl)(tta) derivatives characterised by X-ray structure determinations. The local Cu(II) environment ranges from distorted square-planar to an intermediate form of square-planar and tetrahedral. The beta-diketonate derivatives show varying stability towards methanolysis, giving [{Pt2(mu-S)2(PPh3)4Cu(OMe)}2]2+.  相似文献   

3.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

4.
Cupric and cuprous complexes of bis(2-methylbenzimidazolyl)(2-methylthiophene)amine (L(1)), bis(2-methylbenzimidazolyl)benzylamine (L(2)), bis(2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (L(3)), bis(1-methyl-2-methylbenzimidazolyl)benzylamine (Me(2)L(2)), and bis(1-methyl-2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (Me(2)L(3)) have been spectroscopically, structurally, and electrochemically characterised. The thioether-containing ligands L(3) and Me(2)L(3) give rise to complexes with Cu-S bonds in solution and in the solid state, as evidenced by UV-vis spectroscopy and X-ray crystallography. The Cu(2+) complexes [L(1)CuCl(2)] (1), [L(2)CuCl(2)] (2) and [Me(2)L(3)CuCl]ClO(4) (3(Me,ClO4)) are monomeric in solution according to ESI mass spectrometry data, as well as in the solid state. Their Cu(+) analogues [L(1)Cu]ClO(4), [L(2)Cu]ClO(4), [L(3)Cu]ClO(4) (4-6), [BOC(2)L(1)Cu(NCCH(3))]ClO(4) (4(BOC)), [Me(2)L(2)Cu(NCCH(3))(2)]PF(6) (5(Me)) and [Me(2)L(3)Cu](2)(ClO(4))(2) (6(Me)) are also monomeric in acetonitrile solution, as confirmed crystallographically for 4(BOC) and 5(Me). In contrast, 6(Me) is dimeric in the solid state, with the thioether group of one of the ligands bound to a symmetry-related Cu(+) ion. Cyclic voltammetry studies revealed that the bis(2-methylbenzimidazolyl)amine-Cu(2+)/Cu(+) systems possess half-wave potentials in the range -0.16 to -0.08 V (referenced to the ferrocenium-ferrocene couple); these values are nearly 0.23 V less negative than those reported for related bis(picolyl)amine-derived ligands. Based on these observations, the N(3) or N(3)S donor set of the benzimidazole-derived ligands is analogous to previously reported chelating systems, but the electronic environment they provide is unique, and may have relevance to histidine and methionine-containing metalloenzymes. This is also reflected in the reactivity of [Me(2)L(2)Cu(NCCH(3))(2)](+) (5(Me)) and [Me(2)L(3)Cu](+) (6(Me)) towards dioxygen, which results in the production of the superoxide anion in both cases. The thioether-bound Cu(+) centre in 6(Me) appears to be more selective in the generation of O(2)˙(-) than 5(Me), lending evidence to the hypothesis of the modulating properties of thioether ligands in Cu-O(2) reactions.  相似文献   

5.
The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.  相似文献   

6.
Four new neutral copper azido polymers, [Cu(4)(N(3))(8)(L(1))(2)](n) (1), [Cu(4)(N(3))(8)(L(2))(2)](n) (2), [Cu(4)(N(3))(8)(L(3))(2)](n) (3), and [Cu(9)(N(3))(18)(L(4))(4)](n) (4) [L(1-4) are formed in situ by reacting pyridine-2-carboxaldehyde with 2-[2-(methylamino)ethyl]pyridine (mapy, L(1)), N,N-dimethylethylenediamine (N,N-dmen, L(2)), N,N-diethylethylenediamine (N,N-deen, L(3)), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L(4))], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(4) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(II). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu(II) centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.  相似文献   

7.
8.
Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H)2]·2H2O (1) and [Cu2Cl2(pyz)(H2O)]·H2O (2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N,N′,O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz)2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu–N bond lengths are 2.009(6) Å and Cu–Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C5H3N2O2)Cl2(H2O)] interconnected by [Cu(I)Cl2N] tetrahedral unit and [Cu(II)NO2Cl2] polyhedra. The Cu(I)–Cl and Cu(I)–N distances are 2.327(2)–2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)–Cl and Cu(II)–N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O–HO are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.  相似文献   

9.
Rare examples of (mu-eta2:eta2-disulfido)dicopper complexes have been prepared from Cu(I) and Cu(II) complexes of beta-diketiminate and anilido-imine supporting ligands. A novel byproduct derived from sulfur functionalization of the methine position of a beta-diketiminate ligand was identified. DFT calculations on [(LCu)2X2] (L = beta-diketiminate, X = O or S) complexes rationalize the absence of a bis(mu-sulfido)dicopper isomer, [Cu2(mu-S)2](2+), in the synthetic reactions, yet predict that a [Cu2(mu-S)2](0) core is a stable product of 2-electron reduction of the [Cu2(mu-eta2:eta2-S2)](2+) unit. Exchange of the disulfido ligand was discovered upon reaction of a (mu-eta2:eta2-disulfido)dicopper complex with a Cu(I) reagent.  相似文献   

10.
The new pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine (TL(tBu)) has been prepared in high yield from 2,6-bis(hydroxymethyl)pyridine (1) and 1,3-di-tert-butylimidazolin-2-imine (3). Reaction of TL(tBu) with [Cu(MeCN)4]PF6 affords the highly reactive copper(I) complex [(TL(tBu))Cu]PF6, [5]PF6, which forms the stable copper(I) isocyanide complexes [6a]PF6 (nu(CN) = 2179 cm(-1)) and [6b]PF6 (nu(CN) = 2140 cm(-1)) upon addition of tert-butyl or 2,6-dimethylphenyl isocyanide, respectively. For the cations 6a and 6b, DFT calculations reveal ground-state electronic structures of the type [(TL(tBu)-kappaN(1):kappaN(2))Cu(CNR)] with tricoordinate geometries around the copper atoms. Exposure of [5]PF6 to the air readily leads to trapping of atmospheric CO2 to form the square-planar complex [(TL(tBu))Cu(HCO3-kappaO)]PF6, [7]PF6, with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. In chlorinated solvents such as dichloromethane or chloroform, [5]PF(6) rapidly abstracts chloride by reductive dechlorination of the solvent to yield [(TL(tBu))CuCl]PF6, [8]PF6 quantitatively. Reaction of TL(tBu) with copper(I) bromide or chloride affords complexes 9a and 9b, respectively, for which X-ray diffraction analysis, low-temperature NMR experiments and DFT calculations reveal the presence of a kappa(2)-coordinated ligand of the type [(TL(tBu)-kappaN(1):kappaN(2))CuX]. In solution, complex 9b undergoes slow disproportionation forming the mixed-valence copper(II)/copper(I) system [(TL(tBu))CuCl][CuCl2], [8]CuCl2 with a linear dichlorocuprate(I) counterion.  相似文献   

11.
Four new neutral copper-azido polymers [Cu(6)(N(3))(12)(aem)(2)](n)(1), [Cu(6)(N(3))(12)(dmeen)(2)(H(2)O)(2)](n) (2), [Cu(6)(N(3))(12)(N,N'-dmen)(2)](n) (3), and [Cu(6)(N(3))(12)(hmpz)(2)](n) (4) [aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO(3))(2)·3H(2)O/CuCl(2)·2H(2)O and an excess of NaN(3). Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(6) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.  相似文献   

12.
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.  相似文献   

13.
By using the neutral bidentate nitrogen-containing ligand, bis(3,5-diisopropyl-1-pyrazolyl)methane (L1' '), the copper(I) complexes [Cu(L1' ')2](CuCl2) (1CuCl2), [Cu(L1' ')2](ClO4) (1ClO4), [Cu(L1' ')]2(ClO4)2 (2ClO4), [Cu(L1' ')]2(BF4)2 (2BF4), [Cu(L1' ')(NCMe)](PF6) (3PF6), [Cu(L1' ')(PPh3)](ClO4) (4ClO4), [Cu(L1' ')(PPh3)](PF6) (4PF6), [{Cu(L1' ')(CO)}2(mu-ClO4)](ClO4) (5ClO4), and the copper(II) complexes [{Cu(L1' ')}2(mu-OH)2(mu-ClO4)2] (6), and [Cu(L1' ')Cl2] (7) were systematically synthesized and fully characterized by X-ray crystallography and by IR and 1H NMR spectroscopy. In the case of copper(II), ESR spectroscopy was also applied. In comparison with the related neutral tridentate ligand L1', bis-chelated copper(I) complexes and binuclear linear-coordinated copper(I) complexes are easy to obtain with L1' ', like 1CuCl2, 1ClO4, 2ClO4, and 2BF4. Importantly, stronger and bulkier ligands such as acetonitrile (3PF6) and especially triphenylphosphine (4ClO4 and 4PF6) generate three-coordinate structures with a trigonal-planar geometry. Surprisingly, for the smaller ligand carbon monoxide, a mononuclear three-coordinate structure is very unstable, leading to the formation of a binuclear complex (5ClO4) with one bridging perchlorate anion, such that the copper(I) centers are four-coordinate. The same tendency is observed for the copper(II) bis(mu-hydroxo) compounds 6, which is additionally bridged by two perchlorate anions. Both copper(II) complexes 6 and 7 were obtained by molecular O2 oxidation of the corresponding copper(I) complexes. A comparison of the new copper(I) triphenylphosphine complexes 4ClO4 and 4PF6 with corresponding species obtained with the related tridentate ligands L1' and L1 (8ClO4 and 9, respectively) reveals surprisingly small differences in their spectroscopic properties. Density functional theory (DFT) calculations are used to shed light on the differences in bonding in these compounds and the spectral assignments. Finally, the reactivity of the different bis(pyrazolyl)methane complexes obtained here toward PPh3, CO, and O2 is discussed.  相似文献   

14.
A series of Cu(I) and Cu(II) complexes of a variety of beta-diketiminate ligands (L(-)) with a range of substitution patterns were prepared and characterized by spectroscopic, electrochemical, and, in several cases, X-ray crystallographic methods. Specifically, complexes of the general formula [LCuCl](2) were structurally characterized and their magnetic properties assessed through EPR spectroscopy of solutions and, in one instance, by variable-temperature SQUID magnetization measurements on a powder sample. UV-vis spectra indicated reversible dissociation to 3-coordinate monomers LCuCl in solution at temperatures above -55 degrees C. The Cu(I) complexes LCu(MeCN) exhibited reversible Cu(I)/Cu(II) redox couples with E(1/2) values between +300 and +520 mV versus NHE (cyclic voltammetry, MeCN solutions). These complexes were highly reactive with O(2), yielding intermediates that were identified as rare examples of neutral bis(mu-oxo)dicopper complexes on the basis of their EPR silence, diagnostic UV-vis absorption data, and O-isotope-sensitive resonance Raman spectroscopic features. The structural features of the compounds [LCuCl](2) and LCu(MeCN) as well as the proclivity to form bis(mu-oxo)dicopper products upon oxygenation of the Cu(I) complexes are compared to data previously reported for complexes of more sterically hindered beta-diketiminate ligands (Aboelella, N. W.; Lewis, E. A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 10600. Spencer, D. J. E.; Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 2108. Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270). The observed structural and reactivity differences are rationalized by considering the steric influences of both the substituents on the flanking aromatic rings and those present on the beta-diketiminate backbone.  相似文献   

15.
Unprecedented anion-pi interactions are revealed for the electron-poor triazine rings in [L2(CuCl)3][CuCl4]Cl (L = hexakis(pyridin-2-yl)-[1,3,5]-triazine-2,4,6-triamin), where both the chloride ion and a Cl atom of [CuCl4]2- are located approximately 3.15 A above the ring centroids, in excellent agreement with theoretical predictions for a Cl-...triazine complex. This confirms the importance of attractive anion-pi interactions for the supramolecular assembly of complexes with pi-electron-deficient heteroaromatics.  相似文献   

16.
Four 2-oxo-1,2-dihydroquinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H(2)-OQtsc-R, where R = H, Me, Et or Ph) and their corresponding new copper(II) complexes [CuCl(2)(H(2)-OQtsc-H)]·2H(2)O (1), [CuCl(2)(H(2)-OQtsc-Me)]·2H(2)O (2), [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)]Cl (3) and [CuCl(H-OQtsc-Ph)]·CH(3)OH (4) have been synthesized in order to correlate the effect of terminal N-substitution on coordination behaviour, structure and biological activity. Single crystal X-ray diffraction studies revealed that the complexes 1, 2 and 3 have square pyramidal geometry around the central metal ion. In the complexes 1 and 2, the copper ion is coordinated by the ligand with ONS donor atoms, one chloride ion in apical position and the other chloride in the basal plane. Complex 3 consists of [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)](+) cation and a chloride as counter ion. The copper ion is coordinated by the ligand with ONS donor atoms and by one chloride ion in the basal plane. One methanol molecule is bonded through its neutral oxygen in the apical position. Complex 4 is square planar with the ligand coordinating through uni-negative tridentate ONS(-) and by one chloride ion in the basal plane. The binding of complexes with lysozyme protein was carried out by fluorescence spectroscopy. Investigations of antioxidation properties showed that all the copper(II) complexes have strong radical scavenging properties. The cytotoxicity of the complexes 3 and 4 against NIH 3T3 and HeLa cell lines showed that synergy between the metal and ligands results in a significant enhancement in the cell death with IC(50) of ~10-40 μM. A size dependence of substitution at terminal N in the thiosemicarbazones on the biological activities of the complexes has been observed.  相似文献   

17.
A deep-eutectic solvent with the properties of an ionic liquid is formed when choline chloride is mixed with copper(II) chloride dihydrate in a 1:2 molar ratio. EXAFS and UV-vis-near-IR optical absorption spectroscopy have been used to compare the coordination sphere of the cupric ion in this ionic liquid with that of the cupric ion in solutions of 0.1 M of CuCl(2)·2H(2)O in solvents with varying molar ratios of choline chloride and water. The EXAFS data show that species with three chloride ions and one water molecule coordinated to the cupric ion as well as species with two chloride molecules and two water molecules coordinated to the cupric ion are present in the ionic liquid. On the other hand, a fully hydrated copper(II) ion is formed in an aqueous solution free of choline chloride, and the tetrachlorocuprate(II) complex forms in aqueous choline chloride solutions with more than 50 wt % of choline chloride. In solutions with between 0 and 50 wt % of choline chloride, mixed chloro-aquo complexes occur. Upon standing at room temperature, crystals of CuCl(2)·2H(2)O and of Cu(choline)Cl(3) formed in the ionic liquid. Cu(choline)Cl(3) is the first example of a choline cation coordinating to a transition-metal ion. Crystals of [choline](3)[CuCl(4)][Cl] and of [choline](4)[Cu(4)Cl(10)O] were also synthesized from molecular or ionic liquid solvents, and their crystal structures were determined.  相似文献   

18.
Copper chloride anion clusters with both copper oxidation states can be made by laser desorption of CuCl(2) crystals. We have used this method to study the dissociation characteristics of such cluster ions. The stability and the structure of the observed complexes were probed by ab initio calculations. These calculations show that many of these complexes are bridged structures. Thus, for the Cu(2)Cl(4) dimer anion, formally [ClCu-Cl-CuCl(2)](-) , with putative mixed copper oxidation states, the two copper ions become equivalent through bridging. Such bridging does not occur when redox inactive metal ions are present as in [ClCu-Cl-CaCl(2)](-) . By observing the dissociation characteristics of a variety of metal chloride cluster anions produced from binary mixtures, the following Cl(-) affinity order is obtained: FeCl(3) > CuCl > CaCl(2) > FeCl(2) > AgCl ≈ CuCl(2) ≈ ZnCl(2) > LiCl. Ab initio calculations on the Cl(-) affinity of selected chlorides confirm this order as do Cl(-) affinity estimates from the experimentally known vertical electron detachment energies of the superhalogens CaCl(3)(-) and LiCl(2)(-) . An equimolar mixture of CuCl(2) and FeCl(3) produces an intense cluster ion, which, from (65)Cu labeling experiments, is best described as FeCl(4)(-)···Cu(+)···(-)Cl(4) Fe, a Cu(+) bound superhalogen FeCl(4)(-) dimer. The Cu(+) ion can be replaced by the redox inactive alkali cations and by Ag(+) but these metal ion bound FeCl(4)(-) dimers show an entirely different fragmentation behavior which is attributed to the absence of bridging. Electrospray ionization (ESI) of CuCl(2) produces an extended series of (CuCl(2))(n) Cl(-) anions (n = 1-11) and so in ESI very limited reduction of Cu(2+) takes place. The (CuCl(2))(n) Cl(-) anions show an abundant dissociation via loss of neutral Cu(2)Cl(4) which according to our ab initio calculations is 9 kcal/mol more stable than two CuCl(2).  相似文献   

19.
By reaction of the heterometallic gold-silver complexes [{AuAg(C(6)F(5))(2)(N≡C-Me)}(2)](n) or [{AuAg(C(6)Cl(5))(2)(N≡C-Me)}(2)](n) and CuCl in the presence of pyrimidine and different nitrile ligands (acetonitrile, benzonitrile, and cinnamonitrile), the heteronuclear complexes {[Au(C(6)X(5))(2)][Cu(L)(μ(2)-C(4)H(4)N(2))]}(n) (X = F and L = N≡C-Me (1), L = N≡C-Ph (2) or N≡C-CH═CH-Ph (3); X = Cl and L = N≡C-Me (4), N≡C-Ph (5), N≡C-CH═CH-Ph (6)) have been prepared. The crystal structures of complexes {[Au(C(6)X(5))(2)][Cu(L)(μ(2)-C(4)H(4)N(2))]}(n) (X = F; L = N≡C-CH═CH-Ph (3), X = Cl; L = N≡C-Ph (5)) have been determined by X-ray diffraction studies. The crystal structures of both complexes consists of polymeric chains formed by the repetition of [Au(C(6)X(5))(2)][Cu(L)(μ(2)-C(4)H(4)N(2))] units through copper-pyrimidine bonds. Complexes 1, 2, 4, and 5 are brightly luminescent in the solid state at room temperature and at 77 K with lifetimes in the microseconds range. These compounds are also luminescent in solution, displaying different photophysical behaviors depending on the donor characteristics of the solvents used. The distortion in the excited state allows an associative attack by donor solvents quenching one of the emitting excited states. DFT optimizations of the ground (S(0)) and lowest triplet excited state (T(1)) display the structure distortion of the complexes upon electronic excitation. The molecular orbitals involved in the electronic transitions responsible for the phosphorescence in the case of the complexes 1, 2, 4, and 5 are related to metal (gold-copper) to ligand (pyrimidine) charge transfer transitions, while in the case of the nonluminescent complexes 3 and 6, the nonradiative electronic transition arises from metal (gold-copper) to ligand (cinnamonitrile) charge transfer transitions.  相似文献   

20.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号