首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A detailed theoretical and experimental study of the dependence of fluorescence correlation measurements on optical excitation power due to optical saturation effects is presented. It is shown that the sensitivity of a fluorescence correlation measurement on excitation power becomes increasingly stronger for decreasing excitation power. This makes exact measurements or diffusion coefficients with fluorescence correlation spectroscopy rather difficult. A strong difference of this behavior for continuous-wave and pulsed excitation is found.  相似文献   

3.
Fluorescence correlation spectroscopy (FCS) has become an important tool for measuring diffusion, concentration, and molecular interactions of cellular components. The interpretation of FCS data critically depends on the measurement set-up. Here, we present a rigorous theory of FCS based on exact wave-optical calculations. Six of the most important optical and photophysical factors that influence FCS are studied: fluorescence anisotropy, cover-slide thickness, refractive index of the sample, laser-beam geometry, optical saturation, and pinhole adjustment. Our theoretical framework represents a general attempt to link all relevant parameters of the experimental set-up with the measured correlation function.  相似文献   

4.
The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.  相似文献   

5.
6.
We present for the first time cavity-controlled fluorescence spectra and decay curves of single dipole emitters interacting at room temperature with the first longitudinal mode of a Fabry-Perot microcavity offering a lambda/2-spacing between its silver mirrors. The spontaneous emission rate of individual dye molecules was found to be enhanced by the Purcell effect by up to three times compared to the rate in free space, in agreement with theoretical predictions. Moreover, our new microcavity design was found to provide long-term stability and single-molecule sensitivity under ambient conditions for several months without noticeable reduction of the cavity-Q value. We consider this as a significant advance for single-photon sources operating at room temperature.  相似文献   

7.
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso‐substituted BODIPY fluorescent molecular rotor ( dCbdp ) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dCbdp can respond to interactions with DNA‐binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5–2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA‐associated processes, cellular structures, and also DNA‐based nanomaterials.  相似文献   

8.
The photophysical properties of five fluorescent pH probes derived from 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenolic or naphtholic subunits at position 8 and with substituents having different electron driving forces at positions 3 and 5 have been investigated in several organic solvents, by means of absorption, steady-state, and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity, owing to an increase in the rate of nonradiative deactivation. The rate constants for radiative deactivation, k(f), are nearly constant for all dyes in all solvents studied [k(f)=(1.7+/-0.2)x10(8) s(-1)]. In aqueous solution, these probes undergo a reversible protonation-deprotonation in the near-neutral to basic pH range, producing intensity increases with lower pH. The pK(a) values of the indicators are between 7.5 and 9.3, depending on the substitution pattern on positions 3, 5, and 8. The difference between the absorption and excitation spectra as a function of pH is indicative of the presence of two species in aqueous solution: the phenol- or naphthol-based indicator and its conjugate base.  相似文献   

9.
The fluorescent base analogue 2-aminopurine is a sensitive probe for local dynamics of DNA. Its fluorescence is quenched by interaction with the neighboring bases, but the underlying mechanisms are still under investigation. We studied 2-aminopurine fluorescence in dinucleotides with each of the natural bases. Consistently, two of the four fluorescence-decay components depend strongly on temperature. Our results indicate that these components are due to the excited-state dynamics of a single conformational state. We propose a variation of the gating model in which transient unstacking occurs in the excited state.  相似文献   

10.
We present the results of the deterministic identifiability analysis based on similarity transformation for models of one-state excited-state events of cylindrically symmetric rotors in isotropic environments undergoing rotational diffusion described by Brownian reorientation. Such an analysis on error-free time-resolved fluorescence (anisotropy) data can reveal whether the parameters of the considered model can be determined. The fluorescence delta-response functions I(parallel)(t) and I(perpendicular)(t), for fluorescence polarized respectively parallel and perpendicular to the electric vector of linearly polarized excitation, are used to construct, in convenient matrix form, expressions of the sum S(t) = I(parallel)(t) + 2I(perpendicular)(t), the difference D(t) = I(parallel)(t) - I(perpendicular)(t), and the time-resolved fluorescence anisotropy r(t) = D(t)/S(t). The identifiability analysis of r(t) demonstrates that the rotational diffusion coefficients D(parallel) and D(perpendicular) for rotation respectively about and perpendicular to the symmetry axis can be uniquely resolved. However, the polar and azimuthal angles defining the absorption and emission transition moments in the molecular reference frame are not individually identifiable. Nevertheless, the difference between the polar angles of these transition moments is uniquely determined.  相似文献   

11.
12.
Transient absorption spectroscopy with sub-100 fs time resolution was performed to investigate the oligomerisation behaviour of eYFP in solution. A single time constant tau(AD)=2.2+/-0.15 ps is sufficient to describe the time-resolved anisotropy decay up to at least 200 ps. The close contact of two protein barrels is deduced as the exclusive aggregation state in solution. From the final anisotropy r(infinity)=0.28+/-0.02, the underlying quaternary structure can be traced back to the somewhat distorted structure of the dimers of wt-GFP. The use of autofluorescent proteins as rulers in F?rster resonance energy transfer (FRET) measurements may demand polarisation-sensitive detection of the fluorescence with high time resolution.  相似文献   

13.
An artificial photosynthetic reaction center consisting of a carotenoid (C), a dimesitylporphyrin (P), and a bis(heptafluoropropyl)porphyrin (P(F)), C-P-P(F) , and the related triad in which the central porphyrin has been metalated to give C-P(Zn)-P(F) have been synthesized and characterized by transient spectroscopy. These triads are models for amphipathic triads having a carboxylate group attached to the P(F) moiety; they are designed to carry out redox processes across lipid bilayers. Triad C-P-P(F) undergoes rapid singlet-singlet energy transfer between the porphyrin moieties, so that their excited states are in equilibrium. In benzonitrile, photoinduced electron transfer from the first excited singlet state of P and hole transfer from the first excited singlet state of P(F) yield the initial charge-separated state C-P(.) (+)-P(F) (.) (-). Subsequent hole transfer to the carotenoid moiety generates the final charge-separated state C(.) (+)-P-P(F) (.) (-), which has a lifetime of 1.1 mus and is formed with a quantum yield of 0.24. In triad C-P(Zn)-P(F) energy transfer from the P(Zn) excited singlet to the P(F) moiety yields C-P(Zn)-(1)P(F) . A series of electron-transfer reactions analogous to those observed in C-P-P(F) generates C(.) (+)-P(Zn)-P(F) (.) (-), which has a lifetime of 750 ns and is formed with a quantum yield of 0.25. Flash photolysis experiments in liposomes containing an amphipathic version of C-P(Zn)-P(F) demonstrate that the added driving force for photoinduced electron transfer in the metalated triad is useful for promoting electron transfer in the low-dielectric environment of artificial biological membranes. In argon-saturated toluene solutions of C-P-P(F) and C-P(Zn)-P(F) , charge separation is not observed and a considerable yield of triplet species is generated upon excitation of the porphyrin moieties. In both triads triplet energy localized in the P(F) moiety is channeled to the carotenoid chromophore by a triplet energy-transfer relay mechanism. Certain photophysical characteristics of these triads, including the sequential electron transfer and the triplet energy-transfer relay mechanism, are reminiscent of those observed in natural reaction centers of photosynthetic bacteria.  相似文献   

14.
15.
16.
Spectral and photophysical properties of thioxanthone (9H-thioxanthen-9-one, TX) were determined in a few protic solvents (H2O, D2O, hexafluoro-2-propanol) and compared with those in aprotic solvents. On the basis of the time-resolved and steady-state emission measurements and available literature data, it has been shown that the dominant S1-TX deactivation process in protic solvents is the formation of the S1-complex. The important modes of deactivation of the S1-complex are fluorescence (phiF approximately 0.4-0.5) and intersystem crossing to the T1 state. The S1-complex-->S0 internal conversion plays, at most, an insignificant role in S1-complex deactivation, which is evidenced by the absence of an isotope effect of protic solvents on the lifetime and quantum yield of fluorescence.  相似文献   

17.
Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to μM range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.  相似文献   

18.
19.
The photoinduced primary reaction of the biliverdin binding phytochrome Agp1 (Agp1-BV) from Agrobacterium tumefaciens was investigated by sub-picosecond time-resolved Vis pump-IR probe spectroscopy. Three time constants of tau(1)=0.7+/-0.05 ps, tau(2)=3.3+/-0.2 ps and tau(3)=33.3+/-1.5 ps could be isolated from the dynamics of structurally specific marker bands of the BV chromophore. These results together with those of accompanying sub-picosecond Vis pump-Vis probe spectroscopy allow the extension of the reaction scheme for the primary process by a vibrationally excited electronic ground state. The isomerization at the C15=C16 bond occurs within the lifetime of the excited electronic state. A quantum yield of 0.094 for the primary reaction is determined, suggesting that the quantum yield of formation of the P(fr) far-red-absorbing form is already established in the primary photoreaction of the P(r) (red-absorbing) form.  相似文献   

20.
Compounds formed by linking two tris(ureidobenzyl)amine modules with a hexamethylene tether are described. These compounds self-assemble to form bicapsular aggregates featuring two rings of six hydrogen-bonded ureas. (1)H and (1)H/(1)H ROESY NMR spectroscopy, together with pulsed gradient spin echo (PGSE) NMR diffusion measurements, have been used to characterize the dimers in solution. The results have been compared with energy-minimized structures. The new compounds are kinetically stable on the NMR timescale, and their thermodynamic stabilities are comparable to other capsular aggregates derived from tris(ureidobenzyl)amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号