首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews nanoscale phenomena such as polarization relaxation dynamics and piezoelectric characterization in model ferroelectric thin films and nanostructures using voltage-modulated scanning force microscopy. Using this technique we show the three-dimensional reconstruction of the polarization vector in lead zirconate titanate (PZT) thin films. Second, the time-dependent relaxation of remanent polarization in epitaxial PZT ferroelectric thin films, containing a uniform two-dimensional grid of 90 degrees domains (c-axis in the plane of the film), has been investigated extensively. The 90 degrees domain walls preferentially nucleate the 180 degrees reverse domains during relaxation. Relaxation occurs through the nucleation and growth of reverse 180 degrees domains, which subsequently coalesce and consume the entire region as a function of relaxation time. In addition we also present results on investigation of the relaxation phenomenon on a very local scale, where pinning and bowing of domain walls has been observed. We also show how this technique is used for obtaining quantitative information on piezoelectric constants and by engineering special structures, and how we realize ultrahigh values of piezoconstants. Last, we also show direct hysteresis measurements on nanoscale capacitors, where there is no observable loss of polarization in capacitors as small as 0.16 microm2 in area.  相似文献   

2.
Nanostructured titanium dioxide films have been reported to be used in many applications ranging from optics and solar energy devices to gas sensors. This work describes the synthesis of nanocrystalline titania films via an aqueous solution-gel method. The thin films are deposited by spin coating an aqueous citratoperoxo-Ti(IV)-precursor solution onto a silicon substrate. The influence of processing parameters like Ti4+ concentration and crystallization temperature on the phase formation, crystallite size and surface morphology of the films is studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, the effect of successive layer deposition on the film thickness of the resulting films is studied by means of cross sectional SEM. SEM and TEM micrographs clearly show that, after optimization of the process parameters, thin, smooth, dense nanocrystalline films are synthesized in a reproducible manner. The films are composed of 15–20 nm grains. At higher crystallization temperatures (600, 650°C) also larger particles (40–70 nm) are present. XRD data reveal that a phase pure anatase film is formed at 450°C. Crystallization temperatures equal to or higher than 600 °C however give rise to the formation of both the anatase and rutile crystalline phases. The smoothness of the films is proved by their very low rms surface roughness (≤1.1 nm) measured by AFM.  相似文献   

3.
闫寿科 《高分子科学》2016,34(4):513-522
Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the frictiontransferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.  相似文献   

4.
AFM研究PCL薄膜的结晶形态   总被引:2,自引:0,他引:2  
利用原子力显微镜 (AFM)详细研究了聚己内酯 (PCL)超薄膜及其在特殊限制环境下的结晶形态 .AFM的观察表明 ,PCL在石英基板上的结晶形态呈现典型的球晶及比较少见的树枝状晶两种形态 .认为主要是超薄膜结晶过程中由于几何受限及基板吸附导致分子链扩散移动速度大大降低 ,由此形成的扩散控制结晶过程从而导致最终形成树枝状的分形结构 .将聚合物限制在间距为 10 μm的凹槽内 ,发现PCL的结晶有比较规整的排列 ,而且沿着凹槽的方向结晶排列取向优先 .当在凹槽两侧铝条上施加强电场后 ,发现在静电场作用下 ,PCL的结晶取向生长方向发生改变 ,沿着电场方向排列生长的结晶增多  相似文献   

5.
In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.  相似文献   

6.
Gold‐induced (Au‐) crystallization of amorphous germanium (α‐Ge) thin films was investigated by depositing Ge on aluminum‐doped zinc oxide and glass substrates through electron beam evaporation at room temperature. The influence of the postannealing temperatures on the structural properties of the Ge thin films was investigated by employing Raman spectra, X‐ray diffraction, and scanning electron microscopy. The Raman and X‐ray diffraction results indicated that the Au‐induced crystallization of the Ge films yielded crystallization at temperature as low as 300°C for 1 hour. The amount of crystallization fraction and the film quality were improved with increasing the postannealing temperatures. The scanning electron microscopy images show that Au clusters are found on the front surface of the Ge films after the films were annealed at 500°C for 1 hour. This suggests that Au atoms move toward the surface of Ge film during annealing. The effects of annealing temperatures on the electrical conductivity of Ge films were investigated through current‐voltage measurements. The room temperature conductivity was estimated as 0.54 and 0.73 Scm−1 for annealed samples grown on aluminum‐doped zinc oxide and glass substrates, respectively. These findings could be very useful to realize inexpensive Ge‐based electronic and photovoltaic applications.  相似文献   

7.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

8.
In this publication, we describe the growth of thin films of calcium carbonate beneath Langmuir monolayers of stearic acid. The size and shape of the crystalline structures were systematically studied by means of different microscopic techniques including Brewster angle microscopy, atomic force microscopy and scanning electron microscopy. In a series of experiments, we explored the calcium carbonate crystallization process for different lipid monolayers and subphases. The observed phenomena support a crystallization process which is induced by a thin, film-like structure of a precursor phase. The basic processes of crystal and aggregate formation can be represented by a simple model which is based on electrostatic interactions between the surfactant film and the inorganic calcium carbonate structures.  相似文献   

9.
The biomimetic synthesis of patterned mineral thin films, based on a combination of the microcontact printing technique and a novel crystallization process called the polymer-induced liquid-precursor (PILP) process, is demonstrated. The PILP process enables the deposition of smooth and continuous calcitic mineral films (up to 1500 nm in thickness) under low-temperature and aqueous-based processing conditions. The films are formed by deposition of colloidal droplets composed of a liquid-phase mineral precursor that is induced by a polymeric process-directing agent (polyaspartate or polyacrylate salts). The droplets can be preferentially deposited onto patterned substrates templated with self-assembled monolayers (SAMs) of alkanethiolate on gold. The droplets coalesce to form an amorphous mineral film, which then transforms (solidifies and crystallizes) while retaining the shape of the patterned template, providing a means for patterning the location and morphology of two-dimensional calcite crystals. A vertical substrate experiment supports the premise that the calcite films are created by adsorption of colloidal droplets from solution, rather than heterogeneous nucleation and growth of an amorphous phase on the SAMs. Large single-crystalline domains, on the order of 50-100 microm, can be "molded" into nonequilibrium morphologies by constraining the mineral precursor to a chemically defined "compartment". Biominerals are well recognized for their elaborate nonequilibrium molded crystal morphologies, and increasing evidence suggests that many biominerals are formed from an amorphous precursor that is stabilized by polyanionic proteins. The biomimetic system examined here, which consists of a polyanionic process-directing agent in combination with a functionalized organic template, offers a practical tool for generating complex inorganic structures such as those found in biominerals.  相似文献   

10.
Nanosheet AlOOH and silica spheres composite thin film was deposited onto glass by sol–gel dip-coating method through hydrolysis of boiling water immersion. A silica sol and an alumina sol are employed in dipping process for the preparation of hierarchical nanostructures thin film. The morphology and structure of the films were characterized using field emission scanning electron microscopy and X-ray diffraction. The super-hydrophobicity with high adhesion forces can be attributed to both the rough multi-scale structural coating and surface enrichment of low surface energy with the chemical vapor deposition of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.  相似文献   

11.
By electron beam evaporation and RF magnetron sputtering 500 nm thick niobium films were deposited on thermally oxidized Si-(100)-wafers and by RF magnetron sputtering on monocrystalline sapphire-(1-102)-wafers. Investigations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed differences of the film morphology depending on the substrate used: films deposited on SiO2 exhibited an even surface with small crystallites, films on sapphire showed parallel surface structures with relatively large and well-shaped crystallites pointing at regular crystal growth influenced by the substrate. These differences in film morphology were also reflected in different reflection intensities of the films in XRD patterns, indicating that the films deposited on sapphire were strongly textured. In a first set of experiments nitridation in molecular nitrogen and ammonia was investigated. In a second set of experiments, it was tried to form oxynitrides of niobium by annealing the nitrided films in molecular oxygen. Particularly by X-ray-diffraction the formation of different nitride and oxide phases in dependence of the reaction temperature was examined. Further, elemental depth profiles were recorded by secondary ion mass spectrometry (SIMS) to track the position of the phases formed in the film. The different substrates led to disparate film reactivities, resulting in different nitridation grades of the films at similar reaction temperatures. In general, larger crystallite sizes resulted in less chemical reactivity of the films: even after nitridation at 1000 °C metallic niobium was still present in films deposited on sapphire. However, no evidence was obtained for the formation of oxynitrides by the process sequence observed.  相似文献   

12.
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163  相似文献   

13.
We have developed a new carbon film electrode material with thornlike surface nanostructures to realize efficient direct electron transfer (DET) with enzymes, which is very important for various enzyme biosensors and for anodes or cathodes used in biofuel cells. The nanostructures were fabricated using UV/ozone treatment without a mask, and the obtained nanostructures were typically 2-3.5 nm high as confirmed by atomic force microscopy measurements. X-ray photoelectron spectroscopy and transmission electron microscopy revealed that these nanostructures could be formed by employing significantly different etching rates depending on nanometer-order differences in the local sp(3) content of the nanocarbon film, which we fabricated with the electron cyclotron resonance sputtering method. These structures could not be realized using other carbon films such as boron-doped diamond, glassy carbon, pyrolyzed polymers based on spin-coated polyimide or vacuum-deposited phthalocyanine films, or diamond-like carbon films because those carbon films have relatively homogeneous structures or micrometer-order crystalline structures. With physically adsorbed bilirubin oxidase on the nanostructured carbon surface, the DET catalytic current amplification was 30 times greater than that obtained with the original carbon film with a flat surface. This efficient DET of an enzyme could not be achieved by changing the hydrophilicity of the flat carbon surface, suggesting that DET was accelerated by the formation of nanostructures with a hydrophilic surface. Efficient DET was also observed using cytochrome c.  相似文献   

14.
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.  相似文献   

15.
In this paper, we report 3D nickel (II) hydroxide thin films with porous nanostructures prepared on Ni foam by direct current electrodeposition from aqueous solution of Ni(NO3)2 through basic chemicals. The effect of deposition temperature on Ni(OH)2 thin film morphology is examined by field emission scanning electron microscopy, which is found to have significant influence on capacitance performance of Ni(OH)2 thin films. Moreover, the effect of annealing temperature on electrochemical capacitance and long-time stability of Ni(OH)2 thin films is investigated. An optimum-specific capacitance value of 2,447?farads?g?1 is obtained for Ni(OH)2 thin film deposited at 20?°C and annealed at 100?°C.  相似文献   

16.
A low temperature route to crystalline titania nanostructures in thin films is presented. The synthesis is performed by the combination of sol‐gel processes, using a novel precursor for this kind of application, an ethylene glycol‐modified titanate (EGMT), and the structure templating by micro‐phase separation of a di‐block copolymer. Different temperatures around 100 °C are investigated. The nanostructure morphology is examined with scanning electron microscopy, whereas the crystal structure and thin film compositions are examined by scattering methods. Optoelectronic measurements reveal the band‐gap energies and sub‐band states of the titania films. An optimum titania thin film is created at temperatures not higher than 90 °C, regarding sponge‐like morphology with pore sizes of 25–30 nm, porosity of up to 71 % near the sample surface, and crystallinity of titania in the rutile phase. The low temperature during synthesis is of high importance for photovoltaic applications and renders the resulting titania films interesting for future energy solutions.  相似文献   

17.
The fabrication of a functional multilayer system with a gradually hierarchical order formed by individual titania thin films of different porosity is investigated. The porous or sponge-like nanostructures are fabricated using a diblock copolymer assisted sol–gel process. The successive spin-coating of the sol–gel solution onto the silicon substrate deposits a thin polymer nanocomposite film which is transformed to purely anatase titania nanostructures via calcination. In total, this procedure is repeated layer by layer for three times. This layer-by-layer approach is monitored with grazing incidence small-angle X-ray scattering (GISAXS) after each fabrication step. The GISAXS investigation is complemented in real space with a scanning electron microscopy characterization of the respective preparation stages. From the characterization, a porous titania multilayer system with gradually structured levels is clearly identified.  相似文献   

18.
Ni thin films with different thicknesses were deposited on pre‐treated polyimide substrates by ion beam‐assisted deposition. Dependence of structural, mechanical and electrical properties of the Ni films on their thickness was investigated. The results showed a clear correlation between film properties and film thickness. The inter‐diffusion at the interface regions of the films with different deposition time were demonstrated by transmission electron microscopy and X‐ray photoelectron spectroscopy. With increasing film thickness, surface roughness of the Ni films firstly decreased and then increased, while the grain size gradually increased. Residual stress of the Ni thin films decreased with increasing Ni film thickness up to 202 nm and then slightly increased as the film thickness further increased. Resistivity decreased, and temperature coefficient of resistivity (TCR) increased with increasing film thickness due to the enhancement of crystallization degree and the increase in grain size. The decrease in surface roughness and residual stress also contributed to the decrease of resistivity and the increase of TCR of the films. An optimal film thickness is suggested, which yielded a relatively high TCR value and low levels of both surface roughness and residual stress. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The morphology of some amide-hydrazide polymers of the type useful for high-modulus X-500 class fibers has been characterized by transmission electron microscopy of thin films crystallized from dilute solution. Selected area electron diffraction was used to characterize the crystallinity and crystal structure of the thin films and precipitated polymer. The films were cast from concentrated solutions and crystallized by heating the films. The results of these studies revealed several unique features relative to the crystal structure of the all-para polymers. Thin films of the crystallized polymer showed a distinctive crystalline texture—the molecular chains were found to be preferentially oriented parallel to the film plane and randomly oriented about an axis normal to the film plane. Electron diffraction measurements showed equatorial reflection maxima at tilt angles of = 30, ±48, and =59 when the films were tilted on an axis parallel to the film plane. From these results a tentative crystal unit cell and theoretical crystal density were determined: a = 8.5 [Agrave], b = 4.9 Å, c (chain axis) = 29.6 Å, p (density) =1.51 g/cc. The value a/b = 1.735, which is very near 31/2, implies essentially hexagonal packing of the chains. Crystallization from dilute solution revealed lamellar structures resembling “single crystals” in the electron microscope similar to those observed in other crystalline polymers. However, in contrast to these other polymers, these “crystals” are not likely to contain folded chains because of the very rigid nature of the all-para poiyamide-hydrazide.  相似文献   

20.
Based on the complete 3D numerical solutions of the nonlinear thin film equation, we address the problems of surface instability, dynamics, morphological diversity and evolution in unstable thin films of the liquids that display complete macroscale wetting. The twin constraints of complete macroscale wettability and nanoscale instability produce a variety of microscopic morphological phases approximating sharp crystal surfaces with flat tops resembling a mesa or a micro "pancake" or a slice of Swiss cheese. While the maximum thickness of flat regions is found to be independent of the initial film thickness, the precise lateral morphology of microdomains formed depends on the film thickness. As the film thickness is increased, the initial pathway of evolution changes from the formation of small spherical droplets, to long mesas (parapets) and islands, to circular holes, all of which eventually resolve by ripening into a collection of round pancakes at equilibrium. However, beyond a certain transition thickness, a novel metastable honeycombed morphology, resembling a membrane or a slice of Swiss cheese, is uncovered, which is produced by an abrupt "freezing" of the evolution during hole growth. In contrast, the spinodal dewetting in thin films of partially wettable systems always engenders spherical droplets at equilibrium. The equilibrium dewetted area from simulations, as well as from simple mass balance, is shown to decline linearly with the initial film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号