首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a new relaxation method for mathematical programs with complementarity constraints. Based on the fact that a variational inequality problem defined on a simplex can be represented by a finite number of inequalities, we use an expansive simplex instead of the nonnegative orthant involved in the complementarity constraints. We then remove some inequalities and obtain a standard nonlinear program. We show that the linear independence constraint qualification or the Mangasarian–Fromovitz constraint qualification holds for the relaxed problem under some mild conditions. We consider also a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is a weakly stationary point of the original problem and that, if the function involved in the complementarity constraints does not vanish at this point, it is C-stationary. We obtain also some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices of the Lagrangian functions of the relaxed problems are new and can be verified easily. Our limited numerical experience indicates that the proposed approach is promising.  相似文献   

2.
We consider a mathematical program with complementarity constraints (MPCC). Our purpose is to develop methods that enable us to compute a solution or a point with some kind of stationarity to MPCC by solving a finite number of nonlinear programs. We apply an active set identification technique to a smoothing continuation method (Ref. 1) and propose a hybrid algorithm for solving MPCC. We develop also two modifications: one makes use of an index addition strategy; the other adopts an index subtraction strategy. We show that, under reasonable assumptions, all the proposed algorithms possess a finite termination property. Further discussions and numerical experience are given as well This work was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan. The authors are grateful to Professor Paul Tseng for helpful suggestions on an earlier version of the paper.  相似文献   

3.
In this paper, a mathematical program with complementarity constraints (MPCC) is reformulated as a nonsmooth constrained mathematical program via the Fischer–Burmeister function. Smooth penalty functions are used to treat this nonsmooth constrained program. Under linear independence constraint qualification, and upper level strict complementarity condition, together with some other mild conditions, we prove that the limit point of stationary points satisfying second-order necessary conditions of unconstrained penalized problems is a strongly stationary point, hence a B-stationary point of the original MPCC. Furthermore, this limit point also satisfies a second-order necessary condition of the original MPCC. Numerical results are presented to test the performance of this method.  相似文献   

4.
In this paper, an algorithm for solving a mathematical programming problem with complementarity (or equilibrium) constraints (MPEC) is introduced, which uses the active-set methodology while maintaining the complementarity restrictions throughout the procedure. Finite convergence of the algorithm to a strongly stationary point of the MPEC is established under reasonable hypotheses. The algorithm can be easily implemented by adopting any active-set code for nonlinear programming. Computational experience is included to highlight the efficacy of the proposed method in practice.  相似文献   

5.
The relationship between the mathematical program with linear complementarity constraints (MPLCC) and its inequality relaxation is studied. Based on this relationship, a new sequential quadratic programming (SQP) method is presented for solving the MPLCC. A certain SQP technique is introduced to deal with the possible infeasibility of quadratic programming subproblems. Global convergence results are derived without assuming the linear independence constraint qualification for MPEC, the nondegeneracy condition, and any feasibility condition of the quadratic programming subproblems. Preliminary numerical results are reported. Research is partially supported by Singapore-MIT Alliance and School of Business, National University of Singapore.  相似文献   

6.
In this paper, we consider a mathematical program with complementarity constraints. We present a modified relaxed program for this problem, which involves less constraints than the relaxation scheme studied by Scholtes (2000). We show that the linear independence constraint qualification holds for the new relaxed problem under some mild conditions. We also consider a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is C-stationary to the original problem under the MPEC linear independence constraint qualification and, if the Hessian matrices of the Lagrangian functions of the relaxed problems are uniformly bounded below on the corresponding tangent space, it is M-stationary. We also obtain some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices mentioned above are new and can be verified easily. This work was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan. The authors are grateful to an anonymous referee for critical comments.  相似文献   

7.
结合罚函数思想和广义梯度投影技术,提出求解非线性互补约束数学规划问题的一个广义梯度投影罚算法.首先,通过扰动技术和广义互补函数,将原问题转化为序列带参数的近似的标准非线性规划;其次,利用广义梯度投影矩阵构造搜索方向的显式表达式.一个特殊的罚函数作为效益函数,而且搜索方向能保证效益函数的下降性.在适当的假设条件下算法具有全局收敛性.  相似文献   

8.
In this paper, we apply a partial augmented Lagrangian method to mathematical programs with complementarity constraints (MPCC). Specifically, only the complementarity constraints are incorporated into the objective function of the augmented Lagrangian problem while the other constraints of the original MPCC are retained as constraints in the augmented Lagrangian problem. We show that the limit point of a sequence of points that satisfy second-order necessary conditions of the partial augmented Lagrangian problems is a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit point is feasible to MPCC, the linear independence constraint qualification for MPCC and the upper level strict complementarity condition hold at the limit point. Furthermore, this limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical experiments are done to test the computational performances of several methods for MPCC proposed in the literature. This research was partially supported by the Research Grants Council (BQ654) of Hong Kong and the Postdoctoral Fellowship of The Hong Kong Polytechnic University. Dedicated to Alex Rubinov on the occassion of his 65th birthday.  相似文献   

9.
We propose a method for finding a global optimal solution of programs with linear complementarity constraints. This problem arises for instance in bilevel programming. The main idea of the method is to generate a sequence of points either ending at a global optimal solution within a finite number of iterations or converging to a global optimal solution. The construction of such sequence is based on branch-and-bound techniques, which have been used successfully in global optimization. Results on a numerical test of the algorithm are reported.The main part of this article was written during the first authors stay as Visiting Professor at the Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Japan. The second and the third authors were supported by Grant-in-Aid for Scientific Research C(2) 13650061 of the Ministry of Education, Culture, Sports, Science, and\break Technology of Japan.The authors thank P. B. Hermanns, Department of Mathematics, University of Trier, for carrying out the numerical test reported in Section 5. The authors also thank the referees and the Associate Editor for comments and suggestions which helped improving the first version of this article.  相似文献   

10.
We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of this function for solving the mathematical program. We investigate the limiting behaviour of optimal solutions, KKT points and B-stationary points of the smoothing problem. We show that a class of mathematical programs with P-matrix linear complementarity constraints can be reformulated as a piecewise convex program and solved through a sequence of continuously differentiable convex programs. Preliminary numerical results indicate that the method and convex reformulation are promising.  相似文献   

11.
Mathematical programs with equilibrium constraints (MPEC) are nonlinear programs which do not satisfy any of the common constraint qualifications (CQ). In order to obtain first-order optimality conditions, constraint qualifications tailored to the MPECs have been developed and researched in the past. In this paper, we introduce a new Abadie-type constraint qualification for MPECs. We investigate sufficient conditions for this new CQ, discuss its relationship to several existing MPEC constraint qualifications, and introduce a new Slater-type constraint qualifications. Finally, we prove a new stationarity concept to be a necessary optimality condition under our new Abadie-type CQ.Communicated by Z. Q. Luo  相似文献   

12.
This paper presents a sequential quadratic programming algorithm for computing a stationary point of a mathematical program with linear complementarity constraints. The algorithm is based on a reformulation of the complementarity condition as a system of semismooth equations by means of Fischer-Burmeister functional, combined with a classical penalty function method for solving constrained optimization problems. Global convergence of the algorithm is established under appropriate assumptions. Some preliminary computational results are reported.  相似文献   

13.
<正>Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.  相似文献   

14.
A new formulation as well as a new solution technique is proposed for an equilibrium path-following method in two-dimensional quasistatic frictional contact problems. We consider the Coulomb friction law as well as a geometrical nonlinearity explicitly. Based on a criterion of maximum dissipation of energy, we propose a formulation as a mathematical program with complementarity constraints (MPEC) in order to avoid unloading solutions in which most contact candidate nodes become stuck. A regularization scheme for the MPEC is proposed, which can be solved by using a conventional nonlinear programming approach. The equilibrium paths of various structures are computed in cases such that there exist some limit points and/or infinite number of successive bifurcation points.  相似文献   

15.
A new smoothing approach was given for solving the mathematical programs with complementarity constraints (MPCC) by using the aggregation technique. As the smoothing parameter tends to zero, if the KKT point sequence generated from the smoothed problems satisfies the second-order necessary condition, then any accumulation point of the sequence is a B-stationary point of MPCC if the linear independence constraint qualification (LICQ) and the upper level strict complementarity (ULSC) condition hold at the limit point. The ULSC condition is weaker than the lower level strict complementarity (LLSC) condition generally used in the literatures. Moreover, the method can be easily extended to the mathematical programs with general vertical complementarity constraints.  相似文献   

16.
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.Research supported in part by the National Science Foundations VIGRE Program (Grant DMS-9983646).Research partially supported by NSF Grant number CCR-9901822.  相似文献   

17.
We present a modified quadratic penalty function method for equality constrained optimization problems. The pivotal feature of our algorithm is that at every iterate we invoke a special change of variables to improve the ability of the algorithm to follow the constraint level sets. This change of variables gives rise to a suitable block diagonal approximation to the Hessian which is then used to construct a quasi-Newton method. We show that the complete algorithm is globally convergent. Preliminary computational results are reported.  相似文献   

18.
In this paper, we present a power penalty function approach to the linear complementarity problem arising from pricing American options. The problem is first reformulated as a variational inequality problem; the resulting variational inequality problem is then transformed into a nonlinear parabolic partial differential equation (PDE) by adding a power penalty term. It is shown that the solution to the penalized equation converges to that of the variational inequality problem with an arbitrary order. This arbitrary-order convergence rate allows us to achieve the required accuracy of the solution with a small penalty parameter. A numerical scheme for solving the penalized nonlinear PDE is also proposed. Numerical results are given to illustrate the theoretical findings and to show the effectiveness and usefulness of the method. This work was partially supported by a research grant from the University of Western Australia and the Research Grant Council of Hong Kong, Grants PolyU BQ475 and PolyU BQ493.  相似文献   

19.
We consider optimization problems with a disjunctive structure of the feasible set. Using Guignard-type constraint qualifications for these optimization problems and exploiting some results for the limiting normal cone by Mordukhovich, we derive different optimality conditions. Furthermore, we specialize these results to mathematical programs with equilibrium constraints. In particular, we show that a new constraint qualification, weaker than any other constraint qualification used in the literature, is enough in order to show that a local minimum results in a so-called M-stationary point. Additional assumptions are also discussed which guarantee that such an M-stationary point is in fact a strongly stationary point.   相似文献   

20.
一类逼近l1精确罚函数的罚函数   总被引:1,自引:0,他引:1  
本文对可微非线性规划问题提出了一个渐近算法,它是基于一类逼近l1精确罚函数的罚函数而提出的,我们证明了算法所得的极小点列的聚点均为原问题的最优解,并在Mangasarian-Fromovitz约束条件下,证明了有限次迭代之后,所有迭代均为可行的,即迭代所得的极小点为可行点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号