首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The determination of the critical micelle concentration (CMC) of cationic surfactants by capillary electrophoresis was demonstrated. In this study, tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium bromide (DoTAB) were selected as cationic surfactants and propazine was chosen as test solute. In the evolution of the effective electrophoretic mobility of propazine as a function of surfactant concentration, a dramatic change in slope at a particular concentration is a good indication of the CMC of this surfactant. The CMC values determined experimentally were further confirmed by a curve-fitting approach. Simulation of the electrophoretic mobility curves as a function of surfactant concentration in both micellar electrokinetic chromatography and capillary zone electrophoresis using cationic surfactants as an electrolyte modifier was performed for propazine, and the intersection of these two mobility curves allowed us to precisely predict the CMC of the surfactant. The CMC values determined for TTAB and DoTAB are 1.6 ± 0.1 and 11.0 ± 0.1 mM, respectively, in the case of an electrolytic solution consisting of 70 mM phosphate buffer at pH 6.0. Moreover, the applicability of the electroosmotic mobility as a parameter for the determination of the CMC was examined.  相似文献   

2.
Summary This study deals with the simultaneous analysis of UV-transparent anions by capillary electrophoresis with indirect UV-detection. With a background electrolyte (BGE) based on UV-absorbing chromate and UV-transparent borate, the interference of system peaks with those of sample anions (chloride, sulfate, citrate, phosphate) is shown. The existence of such system peaks, and their position in relation to the peaks of the sample anions, are explained on the basis of the eigenpeak theory proposed by Poppe [1]. With this BGE the system peaks were manifested as a negative peak followed by a positive peak. Their shapes depended on the relative mobilities of the analyte and BGE anions and their areas depended on the amount of sample. The mobility of the system peak depends on the borate/boric acid mobility, which was adjusted by slight variation of the pH close to its pK a-pH is the key factor governing system-peak mobility. When the locations of the system peaks are optimized, the quantification of citrate can be achieved; this was successfully used for determination of anions in milk.  相似文献   

3.
Williamson Y  Davis JM 《Electrophoresis》2005,26(21):4026-4042
Peaks of benzene (bz) and naphthalene (np) having diffuse fronts and steep rears under overload conditions were studied quantitatively in MEKC with SDS surfactant. The retardation factors of these compounds, solubilized at microM to mM concentrations by either 10, 30, or 50 mM SDS, were determined by vacancy MEKC and frontal analysis MEKC. Isotherm coordinates were calculated from the retardation factors, and the equation for the concave upward anti-Langmuir isotherm was fit to them. Peak profiles were computed with the MacCormack algorithm from the isotherm fits and a simplified continuity equation appropriate to MEKC. These profiles were compared to ones generated in normal MEKC from samples of bz and np solubilized at muM to mM concentrations by either 10, 30, or 50 mM SDS. In all cases, the anti-Langmuir isotherm described the asymmetry of experimental peaks. For bz in 30 and 50 mM SDS and np in 10 and 50 mM SDS, good to excellent agreement was found between the experimental and predicted profiles. For bz in 10 mM SDS, the experimental profiles were more broadened than the predicted ones, although their asymmetries agreed. For np in 30 mM SDS, the experimental isotherm predicted greater peak asymmetry than was observed, and the correct anti-Langmuir isotherm for all sample concentrations and field strengths was calculated from the most asymmetrical peak by the inverse method. The relative decrease of zone velocity with increasing analyte concentration was calculated from the isotherm parameters, electrokinetic mobilities, retardation factors, surfactant concentrations, and CMC. The simplification of the continuity equation was justified.  相似文献   

4.
Capillary electrophoresis (CE) has been proven to be a convenient and useful technique for the determination of the critical micelle concentration (CMC) of a surfactant in an electrophoretic system under operating conditions. In this review, methodological approaches to the determination of the CMC of surfactants by CE technique are described. The practical requirements for making such measurements and the CMC values of surfactants determined by CE methods are presented. In addition, difficulties and uncertainty, as well as misconceptions that may arise in the CMC determination are discussed.  相似文献   

5.
Critical micelle concentration (CMC) is an essential fundamental property of surfactant molecules, as the CMC value provides significant information regarding the surfactant for industrial use. The industrial efficacy of surfactant molecules totally depends on its CMC value. Without a complete perceptive approach of CMC, it is impractical to employ surfactant molecules efficiently. This article provides an elaborate discussion of dimeric gemini surfactant and pays particular attention to the aggregation behavior, that is, micelle formation, CMC, and thermodynamics of micellization. Micelles structures, packing parameters, and properties of the micelles are summarized. The principles and techniques involved in the determination of CMC are discussed. Thermodynamics of micellization of dimeric surfactants including free energy, enthalpy, and entropy is successively reviewed. Superiority of gemini surfactant in respect of their CMC values is interpreted.  相似文献   

6.
The fluorescence behavior of two near-infrared (NIR) chromophores with linear alkyl chains of different lengths, 2-[4′chloro-7′(3″ethyl-2″benzothiaolinylidene)-3′,5′-(1″′3′″-propanediyl)-1′3′,5′-heptantriene-1′-yL]-3-ethylbenzothiazolium iodide (Probe Ⅰ) and 2-[4′chloro-7′(3″hexadecyl-2″benzothiazolinylidene)-3′,5′-(1′″,3′″-propanediyl)-1′,3′,5′-heptantriene-1′-yl]-3-ethylbenzothiazolium iodide (Probe Ⅱ), in aqueous solution containing different concentrations of surfactants was studied. The fluorescence of the probe with a short chain (probe Ⅰ) was completely quenched in water and aqueous solution containing a low concentration (below the critical micelle concentration,CMC) of surfactant Triton X-100. However, the fluorescence reappeared and reached maximum rapidly once the concentration of the surfactant approached the CMC. The probe with a long chain (probe II) displayed a similar fluorescence behavior but more dramatically fluorescent recovery in Triton X-100 system, which gave a direct in- dication for the micelle forming process and provided a simple method for the determination of the critical micelle concentration of the surfactant. The CMC values determined by this method were in good agreement with those obtained by other techniques. The fluorescence behavior of the two probes in other surfactant systems was also investigated.  相似文献   

7.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

8.
We studied system peaks present in the electropherograms obtained in the separation of anions by capillary electrophoresis with indirect spectrophotometric detection and cathode electroosmotic flow (EOF) with a chromate background electrolyte. The system peaks correspond to the zones with changed concentration of the background electrolyte; they formed when the zones of each analyte passed through the outlet of the capillary and then moved towards the EOF detector. It has been revealed that the height and area of the system peaks linearly depends on the concentration of the corresponding anion and the areas of the system peaks can achieve 10% of the anion peak area. An algorithm has been proposed for the determination of the optimal conditions for anion separation using hydrodynamic pressure for the regulation of the EOF flow rate. This algorithm prevents the overlapping of the anion and system peaks.  相似文献   

9.
Supplementing our recent work on UV-absorbing anionic surfactants, new protocols based on frontal analysis continuous capillary electrophoresis (FACCE) were developed for the investigation of the aggregation threshold of non-UV absorbing anionic, cationic and neutral surfactants, and exemplified with sodium dodecyl sulfate (SDS), tetradecyltrimethylammonium bromide (TTABr) and Brij 35. Contrary to UV-absorbing surfactants, the critical micelle concentration (CMC) determination of non-UV absorbing surfactants requires the use of a marker providing adequate detection capabilities. UV-absorbing markers were selected, according to the charge of the studied surfactant (neutral for SDS and TTABr, anionic for Brij 35). In all cases, the free marker concentration was quantified as a function of the total surfactant concentration. In addition, a modified implementation of FACCE, that we called vacancy FACCE (VFACCE), was employed for the case of the neutral surfactant. VFACCE entails first filling the capillary with the system components to be studied in the background electrolyte, next continuously introducing the plain BGE electrokinetically. The salient theoretical features of FACCE and VFACCE were compared. These new protocols were successfully applied to yield reliable CMC values within short operational time and with low sample consumption.  相似文献   

10.
分散体系形成中表面活性剂使用量的判据   总被引:7,自引:0,他引:7  
通过对甲苯等有机溶剂/水/表面活性剂体系的水基化分散,利用MalvernMicroplus型激光粒度仪对乳化后的分散相粒子大小及其分布进行研究.结果表明,表面活性剂的使用量对分散结果的影响具有局限性,对于具体体系,表面活性剂的临界胶束浓度[CMC(CMCO+CMCW)是这种局限性的量化标志,超出CMC的表面活性剂是多余的,对最终的分散结果无作用,同时也会影响分散体系的稳定性.  相似文献   

11.
The self-assembly behavior of the triterpenoids asiatic acid (AA) and madecassic acid (MA), both widely studied bioactive phytochemicals that are similar in structure to bile salts, were investigated in aqueous solution through atomistic-level molecular dynamics (MD) simulation. AA and MA molecules initially distributed randomly in solution were observed to aggregate into micelles during 75 ns of MD simulation. A "hydrophobic contact criterion" was developed to identify micellar aggregates from the computer simulation results. From the computer simulation data, the aggregation number of AA and MA micelles, the monomer concentration, the principal moments of the micelle radius of gyration tensor, the one-dimensional growth exhibited by AA and MA micelles as the aggregation number increases, the level of internal ordering within AA and MA micelles (quantified using two different orientational order parameters), the local environment of atoms within AA and MA in the micellar environment, and the total, hydrophilic, and hydrophobic solvent accessible surface areas of the AA and MA micelles were each evaluated. The MD simulations conducted provide insights into the self-assembly behavior of structurally complex, nontraditional surfactants in aqueous solution. Motivated by the high computational cost required to obtain an accurate estimate of the critical micelle concentrations (CMCs) of AA and MA from evaluation of the average monomer concentration present in the AA and MA simulation cells, a modified computer simulation/molecular-thermodynamic model (referred to as the MCS-MT model) was formulated to quantify the free-energy change associated with optimal AA and MA micelle formation in order to predict the CMCs of AA and MA. The predicted CMC of AA was found to be 59 microM, compared with the experimentally measured CMC of 17 microM, and the predicted CMC of MA was found to be 96 microM, compared with the experimentally measured CMC of 62 microM. The AA and MA CMCs predicted using the MCS-MT model are much more accurate than the CMCs inferred from the monomer concentrations of AA and MA present in the simulation cells after micelle self-assembly (2390 microM and 11,300 microM, respectively). The theoretical modeling results obtained for AA and MA indicate that, by combining computer simulation inputs with molecular-thermodynamic models of surfactant self-assembly, reasonably accurate estimates of surfactant CMCs can be obtained with a fraction of the computational expense that would be required by using computer simulations alone.  相似文献   

12.
Spheroidal alumina particles of tailor-made size were prepared by the sol-emulsion-gel method under simultaneous mechanical agitation and sonication and by systematic variation of the concentration of a non-ionic surfactant in the organic solvent (oil phase) above or below the critical micelle concentration (CMC). The CMC of the surfactant in the organic solvent of low dielectric constant was determined from discernible breaks in surface tension, viscosity, optical absorption and dye fluorescence vs. concentration curves. The CMC of the surfactant played an important role in controlling the sol droplet size and accordingly, the size of the alumina particles obtained therefrom. Transmission electron microscopy (TEM) revealed that near (but below) CMC the nanospheroids (10–50 m) were in the state of chain-like agglomerates. Beyond CMC, spheroidal particles of larger dimensions were obtained. Particle size analysis showed a sharp decrease in mean size with increasing concentration of the surfactant up to CMC, above which a gentle upward trend was noticed.  相似文献   

13.
利用共振光散射技术在不引入探针的条件下,建立了室温下直接测定十二烷基苯磺酸钠(SDBS)的临界胶束浓度(CMC)的方法.研究发现:在室温下,SDBS水溶液的共振光散射强度(RLS)随SDBS浓度的增加而增强;且当SDBS接近其临界胶束浓度时,RLS强度增强显著,共振光散射峰分别位于330和396 nm.396 nm处的RLS强度与SDBS浓度关系曲线呈S型曲线,本文将曲线突升起点处两条切线的交点对应的SDBS浓度,确定为SDBS的临界胶束浓度(CMC),这与荧光芘探针和电导率等方法测定结果基本一致.并利用此方法分别研究了Ca2+浓度对SDBS及其SDBS-聚乙二醇辛基苯基醚(OP)复配体系聚集行为的影响.结果表明,SDBS与OP以1∶ 3复配时,增强了体系的抗钙能力.  相似文献   

14.
The behavior of surfactants of different natures and chain lengths was studied in flame atomic absorption spectrometry (FAAS) analyses. The variations of absorbance, which arise as a consequence of the surfactant addition to aqueous solutions of Cr(VI) or Cr(III), were measured. Depressions were observed below the critical micelle concentration (CMC), whereas enhancements were observed above the CMC. These depressions are more significant when the surfactant is opposite in charge to the analyte and the longest surfactant chain is used. A mechanism that enables explanation of the effects of a surfactant on FAAS is also suggested. This mechanism is based on the preferential orientation of surfactant molecules to the surface of nebulized droplets.  相似文献   

15.
对壬基酚聚氧乙烯醚在油相中的临界胶束浓度(CMCo)及与之相关的问题进行了研究,并获得了部分CMCo值.对CMCo与表面活性剂自身结构的关系进行分析和数学处理后,发现CMCo与活性物质自身结构间仍为对数关系.同时在对某些具体体系的界面张力随表面活性剂不同而发生的变化进行了详细分析,发现CMCw和CMCo是评价表面活性剂性能的有效工具.  相似文献   

16.
In this study, chemiluminescence (CL) behaviour of Luminol-H2O2 in the presence of the different concentrations of four surfactants, cetyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), sodium dodecyl sulphate (SDS) and polyoxyethylene dodecyl ether (Brij-35), was investigated. A novel method for the direct determination of critical micelle concentration (CMC) of the surfactants using flow-injection CL is described. Under the optimum conditions, the luminescence intensity of the Luminol-H2O2 system increased gradually with increasing concentration of the surfactants before the CMC, but rapidly reached to the emission maximum at the CMC, followed by a decrease after the CMC. The concentrations of the surfactants corresponding to the luminescence maximum are in agreement with the literature CMC values. The main factors affecting the determination of CMC are discussed. The mechanistic studies show that the luminescence peaks observed in the experiment were mainly because of the protective effect of the micelle against the transition of the excited species and the retarding effect of the micelle structures on the CL reaction rate.  相似文献   

17.
The critical micelle concentration (CMC) of several surfactants that contain an NLO chromophore, either at the hydrocarbon tail, or at the hydrophilic headgroup, or even as a counterion, was determined by hyper-Rayleigh scattering (HRS). In all cases, the HRS signal exhibited a similar variation with surfactant concentration, wherein the CMC is inferred from a rather unprecedented drop in the signal intensity. This drop is attributed to the formation of small pre-micellar aggregates, whose concentrations become negligible above CMC. In addition, a probe molecule, which upon protonation yielded a species with significantly enhanced HRS intensity, was developed and its utility for the determination of the CMC of simple fatty acids was demonstrated.  相似文献   

18.
The critical micelle concentration (CMC) for bile salts or other surfactants is defined as that solute concentration at which appreciable changes in such phenomena as light scattering, surface tension, or solubilization of other organic molecules occur, these changes indicating appearance of surfactant aggregates. The CMC thus reflects hydrophobic interactions of the surfactant with itself. The self-association of hydrophobic molecules resembles the partition of a solute into the lipophilic phase in reversed-phase high performance liquid chromatography (RPLC): Both processes can be considered as transfers of a molecule from an aqueous to a lipophilic medium. The critical micelle concentration of a particular bile salt, being a measure of its hydrophobic self-association, should therefore be correlated with its Chromatographic mobility since they are fundamentally related phenomena. Experimentally, significant correlations between these quantities are obtained, both for bile salts andn-alky1 sulfonates, and only microgram amounts of sample are required for RPLC measurements. Among three homologous series of bile salt surfactants, CMC values predicted from RPLC measurements agree, within a standard error of 7%, with CMC values determined directly. This suggests the applicability of reversed-phase liquid chromatography to the micro-scale determination of critical micelle concentrations of bile salts,n-alkyl sulfonates, and other homologous series of surfactants.This work was supported in Part by NIH Grants HL-07878 (W.H.E.) and AI-21873 (B.G.B.) and by a Fulbright Senior Fellowship (B.G.B.). This is paper LXXX in the series Bile Acids by W.H.E.Deceased March 29, 1986  相似文献   

19.
Introduction of a sample into the separation column (microchip channel) in capillary zone electrophoresis (microchip electrophoresis) will cause a disturbance in the originally uniform composition of the background electrolyte. The disturbance, a system zone, can move in some electrolyte systems along the separation channel and, on reaching the position of the detector, cause a system peak. As shown by the linear theory of electromigration based on linearized continuity equations formulated in matrix form, the mobility of the system zone--the system eigenmobility--can be obtained as the eigenvalue of the matrix. Progress in the theory of electromigration allows us to predict the existence and mobilities of the system zones, even in very complex electrolyte systems consisting of several multivalent weak electrolytes, or in micellar systems (systems with SDS micelles) used for protein sizing in microchips. The theory is implemented in PeakMaster software, which is available as freeware (www.natur.cuni.cz/gas). The linearized theory also predicts background electrolytes having no stationary injection zone (water zone, water gap, water dip, EO zone) or unstable electrolyte systems exhibiting oscillations and creating periodic structures. The oscillating systems have complex system eigenmobilities (eigenvalues of the matrix are complex). This paper reviews the theoretical background of the system peaks (system eigenpeaks) and gives practical hints for their prediction and for preparing background electrolytes not perturbed by the occurrence of system peaks and by excessive peak broadening.  相似文献   

20.
The partition of a polydispersed ethoxylated non-ionic surfactant in equilibrated oil–water systems has been studied at 25 °C. The model surfactant used was a commercial sample of nonylphenol ethoxylated with 10 moles of ethylene oxide (NPEO10). The partition isotherms over the range of surfactant concentration including the critical micelle concentration (CMC) were made with n-hexane, i-octane and n-decane as oil phases. Each partition isotherm exhibits a change of slope that matched the CMC value of surfactant determined by surface tension measurements on aqueous solutions. During the partition of NPEO10 in the oil–water systems, the oligomer distribution in the oil and water phases changed because of fractionation. Below CMC, the mean ethoxylation degree in the oil phase was smaller, whereas in water it was higher than the mean initial value of the surfactant. Moreover, the mean ethoxylation degree in both oil and water phase was practically independent of surfactant concentration. Above CMC, the mean distribution of ethoxymers decreased in both phases. This was ascribed to the competition between micelles from water and the oil phase for the more hydrophobic species of the surfactant. The mean distribution of ethoxymers in the aqueous phase asymptoted to a value that was the mean of the surfactant itself, whereas it steeply decreased in the organic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号