首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

2.
A series of complexes [M(bbtr)3]A2 (M=FeII, ZnII; bbtr=1,4‐bis(1,2,3‐triazol‐1‐yl)butane; A=ClO4?, BF4?) and [FexZn1?x(bbtr)3](ClO4)2 (0<x<1) dilute systems was synthesized and characterized. Earlier studies on [Fe(bbtr)3](ClO4)2 ( 1?ClO4 ), which crystallizes in space group P$\bar 3A series of complexes [M(bbtr)(3)]A(2) (M=Fe(II), Zn(II); bbtr=1,4-bis(1,2,3-triazol-1-yl)butane; A=ClO(4)(-), BF(4)(-)) and [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2) (0相似文献   

3.
The syntheses of [FeL][BF(4)](2).H(2)O, [FeL][ClO(4)](2).H(2)O, [FeL][NO(3)](2).CH(3)NO(2) and [FeL][CF(3)SO(3)](2) (L = tris(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine) are described. The isostructural BF(4)(-) and ClO(4)(-) salts are high-spin between 5-300 K, while the other two compounds are high-spin at room temperature but undergo gradual high-->low spin transitions upon cooling. For [FeL][NO(3)](2) this transition is centred at 139 K and proceeds to near-completeness, while for [FeL][CF(3)SO(3)](2) it is centred at 144 K and only proceeds to 50% conversion. The CF(3)SO(3)(-) salt also undergoes spin-crossover centred at 200 K in (CD(3))(2)CO solution, and exhibits dynamic inversion of its helical ligand conformation. All these compounds except the triflate salt have been crystallographically characterised, and show capped trigonal antiprismatic [6 + 1] coordination geometries. The NO(3)(-) and CF(3)SO(3)(-) salts undergo quantitative conversion to trapped, high-spin excited states upon irradiation with a green laser at 10 K (the LIESST effect; LIESST = Light-Induced Excited Spin State Trapping). The thermal stabilities of their LIESST excited states (T(LIESST) = 80-82 K) resemble those found for iron(ii) complexes of bidentate N-heterocyclic ligands. Hence, the LIESST properties of [FeL](2+) are those of a complex of three rigid bidentate domains linked by a flexible spacer, rather than of a single encapsulating podand.  相似文献   

4.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

5.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

6.
The cobalt(II) compounds with long alkyl chains, [Co(C12-terpy)(2)](BF(4))(2)·EtOH·0.5H(2)O(1·EtOH·0.5H(2)O) and [Co(C12-terpy)(2)](BF(4))(2) (1) was synthesized and characterized. The compound 1·EtOH·0.5H(2)O exhibits a "re-entrant spin crossover". The compound 1 exhibits the reentrant spin crossover and multi phase transitions with a wide thermal hysteresis loop.  相似文献   

7.
The photomagnetic properties of two series of spin-crossover solid solutions, [Fe(1-bpp)(2)](x)[Ru(terpy)(2)](1-x)(BF(4))(2) and [Fe(1-bpp)(2)](x)[Co(terpy)(2)](1-x)(BF(4))(2) (1-bpp = 2,6-bis[pyrazol-1-yl]pyridine), have been investigated. For all the materials, the evolution of the T(LIESST) value, the high-spin → low-spin relaxation parameters and the LITH loops were thoroughly studied. Interestingly in the Fe:Co series, along the photo-excitation, cobalt ions are concomitantly converted from low-spin to high-spin states with the iron centres, and also fully relax after light excitation.  相似文献   

8.
Whereas the neat polymeric iron(II) compound [Fe(bbtr)(3)](ClO(4))(2), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, shows a quantitative spin transition triggered by a crystallographic phase transition centered at 107 K with a 13 K wide hysteresis, the iron(II) complexes in the diluted mixed crystals [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2), x = 0.02 and 0.1, stay predominantly in the (5)T(2) high-spin state down to cryogenic temperatures. However, the (1)A(1) low-spin state can be populated as metastable state via irradiation into the spin-allowed (5)T(2)→(5)E ligand-field transition of the high-spin species in the near-infrared. The quantum efficiency of the light-induced conversion is approximately 10% at low temperatures and decreases rapidly above 160 K. The lifetime of the light-induced low-spin state decreases from 15 days at 40 K to 30 ns at 220 K, that is, by 14 orders of magnitude. In the high-temperature regime the activation energy for the low-spin→high-spin relaxation is 1840(20) cm(-1).  相似文献   

9.
The structure and spin-crossover magnetic behavior of [Fe(II)1(6)][BF(4)](2) (1 = isoxazole) and [Fe(II)1(6)][ClO(4)](2) have been studied. [Fe(II)1(6)][BF(4)](2) undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3, a = 17.4387(4) A, c = 7.6847(2) A] and at 130 K [space group P1, a = 17.0901(2) A, b = 16.7481(2) A, c = 7.5413(1) A, alpha = 90.5309(6) degrees, beta = 91.5231(6) degrees, gamma = 117.8195(8) degrees ] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 mu(B) is consistent with high-spin Fe(II). A plateau in mu(T) having a moment of 3.3 mu(B) centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe-N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [Fe(II)1(6)][ClO(4)](2) [space group P3, a = 17.5829(3) A, c = 7.8043(2) A, beta = 109.820 (3) degrees, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [Fe(II)1(6)][ClO(4)](2) slowly decomposes in solutions containing acetic anhydride to form [Fe(III)(3)O(OAc)(6)1(3)][ClO(4)] [space group I2, a = 10.1547(7) A, b = 16.5497(11) A, c = 10.3205(9) A, beta = 109.820 (3) degrees, T = 200 K]. The isosceles Fe(3) unit contains two Fe.Fe distances of 3.2844(1) A and a third Fe.Fe distance of 3.2857(1) A. The magnetic data can be fit to a trinuclear model with H = -2J(S(1)xS(2) + S(2)xS(3)) - 2J(13)(S(1)xS(3)), where J = -27.1 and J(13) = -32.5 cm(-1).  相似文献   

10.
The two potentially tridentate and monoprotic Schiff bases acetylpyridine benzoylhydrazone (HL(1)) and acetylpyridine 4-tert-butylbenzoylhydrazone (HL(2)) demonstrate remarkable coordination versatility towards iron on account of their propensity to undergo tautomeric transformations as imposed by the metal centre. Each of the pyridyl aroylhydrazone ligands complexes with the ferrous or ferric ion under strictly controlled reaction conditions to afford three six-coordinate mononuclear compounds [Fe(II)(HL)(2)](ClO(4))(2), [Fe(II)L(2)] and [Fe(III)L(2)]ClO(4) (HL = HL(1) or HL(2)) displaying distinct colours congruent with their intense CT visible absorptions. The synthetic manoeuvres rely crucially on the stoichiometry of the reactants, the basicities of the reaction mixtures and the choice of solvent. Electrochemically, each of these iron compounds exhibits a reversible metal-centred redox process. By all appearances, [Fe(III)(L(1))(2)]ClO(4) is one of only two examples of a crystallographically elucidated iron(III) bis-chelate compound of a pyridyl aroylhydrazone. Several pertinent physical measurements have established that each of the Schiff bases stabilises multiple spin states of iron; the enolate form of these ligands exhibits greater field strength than does the corresponding neutral keto tautomer. To the best of our knowledge, [Fe(III)(L(1))(2)]ClO(4) and [Fe(III)(L(2))(2)]ClO(4) are the first examples of ferric spin crossovers of aroylhydrazones. Whereas in the former the spin crossover (SCO) is an intricate gradual process, in the latter the (6)A(1)?(2)T(2) transition curve is sigmoidal with T(?)~280 K and the SCO is virtually complete. As regards [Fe(III)(L(1))(2)]ClO(4), M?ssbauer and EPR spectroscopic techniques have revealed remarkable dependence of the spin transition on sample type and extent of solvation. In frozen MeOH solution at liquid nitrogen temperature, both iron(III) compounds exist wholly in the doublet ground state.  相似文献   

11.
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3?:?3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3?:?3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and M?ssbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.  相似文献   

12.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

13.
The spin crossover system, [Fe(bzimpy)(2)](ClO(4))(2).0.25H(2)O, was reinvestigated above room temperature (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine). The system exhibits an abrupt low-spin to high-spin transition at T(c) = 403 K. Liberation of a fractional amount of water does not affect the spin crossover: the system is perfectly reversible with a hysteresis width of DeltaT = 12 K. The existence of the hysteresis at such high temperature determines that the lowest limit of the solid-state cooperativity parameter is J/k > 403 K despite long iron(II) separations (10 A). The high cooperativeness has been assigned to a perfect pi-stacking of the benzimidazole rings in the crystal lattice at a distance as short as 3.6 A. Variable-temperature IR data and the heat capacity measurements match well the magnetic data. The thermodynamic properties are DeltaH = 17 kJ mol(-)(1), DeltaS = 43 J K(-)(1) mol(-)(1), so that the entropy of the spin transition shows a considerable contribution from the molecular vibrations. A theoretical model has been applied in fitting the magnetic data along the whole hysteresis path. A statistical distribution of the cooperativity parameter led to the feature that angled walls of the hysteresis loop are well reproduced.  相似文献   

14.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

15.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

16.
Reaction of H(3)L(1), the Schiff base condensate of tris(2-aminoethyl)amine with three equivalents of 5-methyl-1H-pyrazole-3-carboxaldehyde, with manganese(II)perchlorate or iron(II)tetrafluoroborate results in the isolation of [MH(3)L(1)]X(2) (M = Mn and X = ClO(4) and M = Fe and X = BF(4)). These complexes are high spin d(5) and d(6), respectively, as inferred from the long M-N bond distances obtained by single crystal X-ray diffraction for both and variable temperature magnetic susceptibility and M?ssbauer spectroscopy for the iron complex. Aerobic treatment of a solution of [CoH(3)L(1)](2+) with three equivalents of potassium hydroxide produced [CoL(1)]. Homonuclear pseudo-dimers were prepared by the aerobic reaction of [FeH(3)L(1)](BF(4))(2) with 1.5 equivalents of potassium hydroxide to give {[FeH(1.5)L(1)](BF(4))}(2) or by the metathesis reaction of [FeH(2)L(1)][FeHL(1)](ClO(4))(2) with sodium hexafluorophosphate to give [FeH(3)L(1)][FeL(1)](PF(6))(2). The complexes were characterized by EA, IR, ESI-MS, variable temperature single crystal x-ray diffraction and M?ssbauer spectroscopy. The iron(III) atom is low spin while the iron(II) atom is spin crossover. Heteronuclear pseudo-dimers were prepared by the 1:1 reaction of [FeH(3)L(1)](BF(4))(2) or [MnH(3)L(1)](ClO(4))(2) with [CoL(1)]. [MH(3)L(1)][CoL(1)](X)(2) (M = Fe and X = BF(4) or M = Mn and X = ClO(4)), were characterized by IR, EA, variable temperature single crystal X-ray diffraction and M?ssbauer spectroscopy in the iron case. The data support a spin crossover and high spin assignment for the iron(II) and manganese(II), respectively. DFT calculations demonstrate that the spin state of the iron(II) atom in {[FeH(3)L(1)][FeL(1)]}(2+) changes from high spin to low spin as the iron(II)-iron(III) distance decreases. This is supported by experimental results and is a result of hydrogen bonding interactions which cause a significant compression of the M(II)-N(pyrazole) bond distances.  相似文献   

17.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

18.
By use of a metallo-supramolecular concept, a linear iron(ii) coordination chain [Fe(II)(L)](n)(BF(4))(2n) (L = 1,4-bis(1,2':6',1'-bispyrazolylpyridin-4'-yl)benzene) was rationally designed and synthesized. The molecular chain shows a reversible spin transition at 323 K with a ca. 10 K wide hysteresis loop.  相似文献   

19.
Dinuclear nickel(II) complexes of the ligands 2,6-bis[bis((2-benzimidazolylmethyl)amino)methyl]-p-cresol (bbapOH), N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (tbpOH), N-methyl-N,N',N'-tris(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (m-tbpOH) and 1-[N,N-bis(2-benzimidazolylmethyl)amino]-3-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-hydroxypropane (bpepOH) were prepared in order to model the active site of urease. The novel asymmetric structures of the dinuclear complexes were characterized by X-ray structure analysis. The complex [Ni(2)(bbapO)(ClO(4))(H(2)O)(MeOH)](ClO(4))(2).Et(2)O, 1, crystallizes in the monoclinic space group P2(1)/c, with a = 10.258(2) ?, b = 19.876(3) ?, c = 25.592(4) ?, and beta = 97.12(2) degrees. The nickel ions in 1 are bridged by the phenoxy donor of the ligand and a perchlorate anion. The complexes [Ni(2)(tbpO)(MeCOO)(H(2)O)](ClO(4))(2).H(2)O.Et(2)O, 2, [Ni(2)(m-tbpO)(PhCOO)(EtOH)(2)](ClO(4))(2).EtOH, 3, and [Ni(2)(bpepO)(MeCOO)(H(2)O)(2)](ClO(4))(2).H(2)O.Et(2)O.2EtOH, 4, also crystallize in the monoclinic crystal system with the following unit cell parameters: 2, C2/c, a = 35.360(13) ?, b = 10.958(3) ?, c = 24.821(10) ?, beta = 103.55(3) degrees; 3, Cc, a = 14.663(5) ?, b = 32.630(13) ?, c = 9.839(3) ?, beta = 92.49(2) degrees; 4, C2/c, a = 27.689(13) ?, b = 12.187(5) ?, c = 31.513(14) ?, beta = 115.01(3) degrees. The dinuclear centers of all these complexes are bridged by the alkoxy donor of the ligand and a carboxylate function. Compounds 2 and 3 have one of the nickel ions in a five-coordinated, trigonal bipyramidal coordination environment and thus show a high structural similarity to the dinuclear active site of urease from Klebsiella aerogenes. Furthermore, their magnetic and spectroscopic properties were determined and related to those of the urease enzymes. Activity toward hydrolysis of test substrates (4-nitrophenyl)urea, 4-nitroacetanilide, 4-nitrophenyl phosphate or bis(4-nitrophenyl) phosphate by the dinuclear complexes were examined by UV spectroscopic measurements.  相似文献   

20.
Two new one-dimensional heterometallic complexes, [Mn(3)Na(L)(4)(CH(3)CO(2))(MeOH)(2)](ClO(4))(2)·3H(2)O (1), [Mn(3)Na(L)(4)(CH(3)CH(2)CO(2))(MeOH)(2)](ClO(4))(2)·2MeOH·H(2)O (2) [LH(2) = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn(II) and Na(I) ions in trigonal-prismatic geometries that are linked to octahedral Mn(IV) ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号