首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory constructed graphite furnace electrothermal vaporizer (GF-ETV) was used for studying transport efficiencies. This device enables collection of the vaporization products that exit the central sampling hole of the horizontal graphite tube. For determination of the transport efficiency between the GF-ETV and the ICP-torch three methods were tested: (1) deposition of the aerosol particles and the vapour of certain elements by mixing the vaporization product with supersaturated steam and subsequent condensation (direct method); (2) dissolution of the deposited sample fraction from the interface components (indirect method); and (3) calculation from line intensities when applying GF-ETV and pneumatic nebulization sample introduction methods using mercury as a reference element. The latter, `mercury reference method' required 100% transport efficiency for mercury with the ETV, which could be approximated with the use of argon as carrier gas (without halocarbon addition). With a 200 cm3/min flow rate of internal argon in the graphite tube, the transport efficiency was between 67 and 76% for medium volatility elements (Cu, Mn and Mg) and between 32 and 38% for volatile elements (Cd and Zn). By adding carbon tetrachloride vapour to the internal argon flow, the transport efficiency increased to 67–73% for the five elements studied.  相似文献   

2.
The need for accurate determinations of mercury at sub-ng 1-1 levels in sea water has led to the development of a microwave-excited argon plasma emission method. The system utilizes an amalgamation stage where mercury released from water samples by tin(II) chloride reduction is amalgamated onto silver wool. The wool is subsequently heated and the mercury thus released is flushed by argon into a plasma where it is excited. The emission signal thus produced results in a detection limit of 3·10-17 g and an analytical range of 1·10-14– 1·10-7 g.  相似文献   

3.
The development of a preconcentration method for the measurement of trace levels of mercury in digested sediments is described. Solid phase extraction (SPE) was used for the preconcentration of mercury coupled on-line by means of a flow injection (FI) system followed by cold vapour atomic absorption spectrometry (CVAAS) detection. The SPE was carried out through a column packed with a sorbent material containing triisobutylphosphine sulfide (CYANEX 471X®) as mercury extractant and prepared by the sol-gel process. The effects of FI variables (argon, eluent, and reductant flow rates, loading and elution times) as well as the eluent concentration on the analytical performance of the method were evaluated. The proposed method was validated under the optimum conditions. The calibration graph was linear from 0.05?µg?L?1 to 3.0 µg?L?1 of Hg. The detection limit (DL), based on three times the standard deviation of the blank measurement criterion, was 24?ng?L?1. The repeatability was 1.5% and 1.8% RSD (n?=?10) at concentrations of 0.5 and 1 µg?L?1 of Hg, respectively. Method enrichment factors of 16 with a productivity of 30 samples h?1 or 32 with a productivity of 17 samples h?1 were achieved under selected conditions. Certified reference materials, inductively coupled plasma mass spectroscopy (ICP-MS) and cold vapour atomic fluorescence spectrometry (CVAFS), were used to evaluate the accuracy of the proposed method.  相似文献   

4.
An improved gas sheathed cell for the cold-vapour determination of mercury by atomic fluorescence spectrometry is described. Mercury ions in aqueous solution are reduced by tin(II) chloride, and the mercury flushed from solution by argon is discharged from a tube situated adjacent to the spectrometer entrance slit and a mercury electrodeless discharge lamp. A second stream of argon is directed up small capillaries arranged around this outlet tube to provide a laminar sheath of argon around the atom cell. At optimised flow rates, the signal is about 10 times greater than when no laminar sheath is provided. Precision is also improved. The limit of detection (2σ) is 0.01 ng of mercury for a 0.5-ml aliquot of sample (i.e. 20 ng 1-1). The accuracy of the system is demonstrated by the determination of mercury in NBS Orchard Leaves and in barley seeds. Typically relative standard deviations are in the range 0.6–3%.  相似文献   

5.
A procedure is proposed to avoid spectral and/or non-spectral interferences in graphite furnace atomic absorption spectrometry (GF AAS) by transferring the analyte during the pyrolysis stage from a solid sampling platform to the graphite tube wall that has been coated with a permanent modifier, e.g. by electrodeposition of a platinum-group metal. The direct determination of mercury in solid coal samples was chosen as a model to investigate the feasibility of this idea. The graphite tube surface was coated with palladium and the analyte was transferred from the solid sampling platform to the tube wall at a temperature of 500±50 °C. A characteristic mass of m0=64 pg Hg was obtained for an atomization temperature of 1300 °C, proposing a quantitative transfer of the analyte to the tube wall. Calibration against aqueous mercury standards was not feasible as this element was lost in part already during the drying stage and could not be trapped quantitatively on the modified graphite tube surface. However, the results for all except one of the coal reference materials were within the 95% confidence interval of the certificate when the slope of a correlation curve between the integrated absorbance, normalized for 1 mg of sample, and the certified value for mercury was used for calibration. A detection limit of 0.025–0.05 μg g−1 Hg in coal, calculated from three times the standard deviation of the investigated coal samples, could be obtained with the proposed method. The spectral interference due to excessive background absorption in the direct determination of mercury in coal could be eliminated completely. It is expected that this analyte transfer can be used in a similar way to eliminate other spectral and/or non-spectral interferences in the GF AAS determination of other volatile analytes.  相似文献   

6.
A graphite electrode modified with silver (Ag‐CPE) has been applied to detect mercury(II) using differential pulse voltammetry (DPV). Under optimized conditions, the calibration curve is linear in the range from 5.0×10?8 mol L?1 to 1.0×10?4 mol L?1 of mercury(II). The detection limit was found to be 3.38×10?8 mol L?1 with a relative standard deviation (RSD) of 2.25 % (n=8). The proposed method was successfully applied for the detection of mercury(II) in leachate samples. The Ag‐CP composites were characterized using X‐ray diffraction (XRD), BET adsorption analysis and scanning electron microscopy (SEM).  相似文献   

7.
The applicability of microwave-induced plasma optical emission spectrometry (MIP-OES) for continuous monitoring of the environmentally hazardous element mercury in flue gases has been studied. Microwave induced plasmas have been sustained using both a TM010 cavity (Beenakker resonator) and a so-called Surfatron. The analytical figures of merit for mercury in argon and helium discharges with both types of low-power micro-wave discharges have been examined. To determine mercury in artificial stack gases non-mixed argon/nitrogen discharges have been tested using a tangential flow torch design which allows to introduce a metal-loaded nitrogen gas flow as external gas and argon as internal gas. The addition of main flue gas components such as water vapour (concentration <6 g/m3), oxygen (<4% v/v) and carbon dioxide (<15% v/v) decrease the mercury line intensities to a considerable extent. Trace gases (CO, HCl, SO2, NO) in concentrations typical to waste incineration processes have been found to have no effect on the mercury and the argon line intensities. The detection limit of mercury in nitrogen is 8 g/m3 using the TM010 MIP and 10 g/m3 using the Surfatron. As such low detection limits are below the emission limit values of present-day environmental legislation MIP-OES is useful for on-line monitoring of mercury.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

8.
A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ng l−1 levels of analytes retained on the silica C18 solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C18 amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3 min by the use of sonication stirring instead of magnetic stirring. The use of 1 mol dm−3 hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5 mol dm−3 hydrochloric acid and 10−4% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25 ng l−1, respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.  相似文献   

9.
A simple non-dispersive atomic-fluorescence spectrometer is described for the assay of mercury in solution at the μg l?1 level; it has also been applied to fish samples at the mg kg?1 level. After destruction of the fish sample, the mercury is reduced by tin(II) chloride and released from solution by a stream of argon which crosses the beam of a mercury lamp. The fluorescence signal is detected directly by a solar-blind phototube without the need for monochromators or filters. One analysis requires less than 40 min. The results correlate well with those from atomic-absorption spectrometry and neutron-activation analysis.  相似文献   

10.
Direct cold vapor and hydride generation procedures for As, Bi, Ge, Hg and Se(IV) from aqueous slurry of coal fly ash samples have been developed by using a batch mode generation system. Ir-treated graphite tubes have been used as a preconcentration and atomization medium of the vapors generated. A Plackett–Burman experimental design has been used as a strategy for evaluation of the effects of several parameters affecting the vapor generation efficiency from solid particles, vapor trapping and atomization efficiency from Ir-treated graphite tubes. The effects of parameters such as hydrochloric acid and sodium tetrahydroborate, argon flow rate, trapping and atomization temperatures, trapping time, acid solution volume and mean particle size have been investigated. The significant parameters obtained (trapping and atomization temperatures for As and Ge; trapping temperature and trapping time for Bi; argon flow rate and atomization temperature for Se) have been optimized by 22+star central composite design. For Hg, the trapping temperature has been also significant. Optimum values of the parameters have been selected for the development of direct cold vapor/hydride generation methods from slurry particles. The accuracy of methods have been verified by using NIST-1633a coal fly ash certified reference material. Absolute detection limits of 11.5, 48.0, 600, 55.0 and 11.0 ng l−1 for As, Bi, Ge, Hg and Se have been achieved, respectively. A particle size less than 50 μm has shown to be adequate to obtain total cold vapor/hydride generation of metals content in the aqueous slurry particles.  相似文献   

11.
This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92–98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).  相似文献   

12.
Mercury(II) salts have different decomposition temperatures in a graphite tube or tantalum coil used for electrothermal atomic absorption spectrometry. The nitrate, perchlorate and acetate were spontaneously reduced to mercury vapor at room temperature, but the thiosulfate, sulfide, cyanide and bromide were reduced only on heating. Chloride and thiocyanate in a graphite furnace and iodide in a tantalum coil did not give mercury absorbance on heating. Thiosulfate (1–10 × 10?6 M) was determined by addition to mercury(II) nitrate in acetate buffer, removing the response from the excess mercury(II) nitrate by drying below 100° C in the graphite furnace, and measuring the mercury absorbance on heating, which was proportional to the thiosulfate concentration.  相似文献   

13.
Two pretreatment procedures for total mercury determinations in natural water samples were compared. The first, the Swedish Standard method (DP1), involves digestion of water in the presence of concentrated nitric acid at 120°C and under pressure for 30 min. In the West German Standard method (DP2), small volumes of nitric and sulphuric acids, permanganate and peroxodisulphate are added to the sample, and digestion proceeded at 50°C in an ultrasonic bath. Mercury was determined after both digestion procedures using a modified cold vapour atomic absorption spectrometric method, in which mercury generated on addition of a reducing agent is collected and subsequently atomized in a platinum-lined graphite furnace. The efficacy of the two digestion procedures was tested using various standard organic mercury compounds and it was found that only DP2 provided quantitative recoveries. Purification of the reagents required by DP2 was achieved using a mercury-selective ion-exchange resin, Chelite S, resulting in blank levels below 1.5 ng Hg l?1. Both methods were applied to the determination of total mercury in an unpolluted marsh water sample, giving 2.0 ng Hg l?1 (DP1) and 2.7 ng Hg l?1 (DP2). The West German Standard digestion procedure (DP2) is recommended for the determination of total mercury in natural water samples.  相似文献   

14.
A simple method for the determination of mercury in gasoline samples diluted with ethanol by graphite furnace atomic absorption spectrometry (GF AAS) after cold vapor (CV) generation, pre-concentration in a gold column and trapping on a graphite tube is proposed. The methodology is based upon conventional analytical processes that can be performed by any laboratory with a chemical generation and gold amalgamation systems coupled to the atomic absorption spectrometer. The GF AAS temperature was optimized, being the retention, pyrolysis and atomization temperatures, respectively, 100 °C, 150 °C and 800 °C. Gasoline samples were prepared simply by forming a 2-fold diluted solution in ethanol. The mercury formed vapors by reacting the sample with the reducing agent were pre-concentrated in a gold column and further retained on a graphite tube, coated with gold as permanent modifier. Five samples from different gas stations around the UFSC Campus (Florianópolis, Brazil) were analyzed and the Hg concentrations were found to be in the range from 0.40 µg L− 1 to 0.90 µg L− 1. Calibration against aqueous standard solutions in acidic medium was carried out. The standard solutions had about the same viscosity as the gasoline diluted in ethanol. The relative standard deviations were lower than 2.4% for the samples. The limits of detection in the samples were 0.08 and 0.14 µg L− 1, with and without pre-concentration in the gold column, respectively. The accuracy of the method was estimated by applying the recovery test and recovery values between 92 and 100% were obtained. A sample throughput of 4 h− 1 was achieved. Simplicity and high detection capability are some of the qualities of the method.  相似文献   

15.
A new method for the measurement of the argon isotope composition in a continuous helium flow using isotope mass spectrometers is described for potassium-argon geochronology. Argon was extracted from the samples in a chamber with a multiple-sample holder by successively heating the samples with a continuous infrared laser. Argon extracted in the chamber was preconcentrated in a capillary, separated on a chromatographic capillary column in a helium flow, and then injected into the ion source of a mass spectrometer through an open splitter. Measurements of the 36Ar, 38Ar, and 40Ar isotopes were carried out on isotope mass spectrometers in a dynamic mode using a triple-collector ion detector and three electrometric amplifiers. Preliminary experiments on the developed device for measuring argon isotopes in a continuous helium flow have shown that the proposed method can be used for the determination of radiogenic argon in an amount of n × 10?12 g with the accuracy satisfying the solution of many geochronological problems. In sensitivity and reproducibility, the proposed method is highly competitive to the isotope dilution method for measuring argon and simpler than the conventional methods for measuring radiogenic argon.  相似文献   

16.
A new method for the measurement of argon isotope composition in a continuous flow of helium for potassium/argon geochronology is described. Extraction of argon from geological samples in multiple‐sample holders was carried out in a chamber by heating with a continuous Nd‐YAG laser. The extracted and pre‐concentrated argon is passed through a chromatographic capillary column in a flow of helium. Argon is separated from possible contaminants in the column and is injected through an open split into the ion source of an isotope ratio mass spectrometer. Measurement of the 36Ar, 38Ar and 40Ar isotopes was carried out in dynamic mode, using a triple‐collector ion detector. These experiments have shown that continuous flow mass spectrometry can be used for the analysis of radiogenic argon in picogram quantities with an accuracy that is satisfactory for the solution of many geochronological problems. The method of argon isotope measurement in a continuous flow of helium is an alternative to the measurement of argon isotopes in the static mode. The sensitivity and accuracy of argon measurement by this method are comparable with those provided by the classical static method. The measurement of argon isotopes in a continuous flow of helium is simpler and more reliable than measurement in the static mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min–1 (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min–1) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 g g–1 to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma–atomic emission spectrometry (ICP–AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.  相似文献   

18.
A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched 201Hg isotopic spike is added to cosmetics and the isotope ratios of 201Hg/202Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL−1. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.  相似文献   

19.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

20.
The low-temperature interaction (up to 550°C) of a pre-reduced palladium modifier with sodium sulfate and sodium selenite on the pyrolytic graphite platform was studied using X-ray photoelectron spectroscopy (XPS) and electron microprobe analysis. The equipment applied allowed the introduction of samples heated in an argon flow into the analytical chamber of the XPS spectrometer without contact with the air. Electron microprobe analysis showed that palladium and sulfur preferably occupy different areas on the platform surface. On the contrary, selenium from sodium selenite tends to occupy areas of the graphite surface covered with palladium. The most probable reason for this is the chemisorption of selenium (IV) on the palladium surface at the drying stage. No changes in the XPS spectra of metallic Pd and S6+ were observed when Na2SO4 and Pd were heated together on the graphite platform in the range 100–550°C. The reduction of sodium selenite on the graphite surface already starts during drying. Pre-reduced palladium intensifies this process. The rate of the reduction is proportional to the amount of palladium, and in the presence of palladium at an atomic ratio of Pd/Se=7.5, the transformation of Se4+ into Se0 completes at 250°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号