首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this work, we design and synthesize the novel probe RC through introduction the 1-aza-4,13-dithia-15-crown-5 ring into the structure of rhodamine 6G hydrazide, where the N atom of crown ring is responsible for quenching of rhodamine fluorescence. The compound obtained behaves as multifunctional cation sensor providing selective fluorescent response to Au3+ and selective colorimetric response to Cu2+ ions in aqueous acetonitrile (1/1, v/v) at pH 7.0. The use of 10?5?M RC solution allowed reliable determination of target cations in the presence of a wide range of environmentally relevant ions with detection limits of 2?×?10?6?M and 5?×?10?7?M for gold and copper, respectively.  相似文献   

2.
《Analytical letters》2012,45(17):2751-2761
Quinoline-appended rhodamine B thiohydrazide based fluorescent probe was designed and applied in fluorescent detections of mercury ions in both aqueous solution and living cells. The signal change of the probe is based on a specific metal ion induced reversible ring-opening mechanism of a rhodamine B thiohydrazide. The probe exhibits a dynamic response concentration range for Hg2+ from 1.0 × 10?8 to 1.0 × 10?5 M with a detection limit of 8.5 × 10?9 M. The fluorescent probe is pH independent in medium condition and exhibits high selectivity over other common metal ions.  相似文献   

3.
Iodide is determined after oxidation with nitrous acid in 5 M hydrochloric acid to ICl?2. The ion-pair formed with rhodamine B is extracted into toluene and measured spectrophotometrically (0.5–5 × 10?5 M) or spectrofluorimetrically (1–10 × 10?6 M). The relative standard deviations were 1.8% for the determination of 5 × 10?6 M iodide (n = 5) by spectrofluorimetry and 2.3% (n = 50) for 1 × 10?5 M iodide by spectrophotometry. Periodate, iodate and iodine responded exactly as iodide.  相似文献   

4.
The characteristics, performance and application of ion‐selective electrodes for bromate ion based on rhodamine B and tetrahexyl ammonium bromide as electrode‐active substances are described for the first time. These electrodes respond with sensitivities of (58.0±1.0) and (61.0±2.0) mV decade?1 over the range 1.0×10?8–1.0×10?2 mol l?1 at pH 4–9 and 4–8 and a detection limit of 6.0×10?8 and 4.0×10?8 mol l?1 for rhodamine B and tetrahexyl ammonium bromide sensors, respectively. The electrodes are easily constructed at a relatively low cost, have a fast response time and can be used for a period of 3 months without any considerable divergence in potential. The proposed sensors displayed good selectivity for bromate ion in the presence of several substances and inorganic anions. Sensors were used for the direct assay of bromate ion in drinking water samples.  相似文献   

5.
Titanium(III) and iron(II) are shown to stimulate luminol chemiluminescence in the absence of added oxidant. Down to 10?9 M titanium can be determined. Both metal ions also produce chemiluminescence when injected into 0.1 M carbonate buffer (pH 10.4), allowing >10?6 M of each to be determined. The intensities are greater when the solutions have been deoxygenated by a stream of nitrogen, and when rhodamine B is used as a sensitizer.  相似文献   

6.
An inexpensive flow-injection instrument for determining low concentrations of dissolved reactive phosphorus in natural waters is reported. The unique feature is the use of an inexpensive detector consisting of a flow cell and a simple photometer that incorporates a super-bright light-emitting diode as the source and a photodiode as the detector. The tin(II) chloride-molybdate method was optimized using a modified simplex optimization method. Silicate interference up to 5 mg Si l?1 was removed by addition of 0.10% (w/v) tartaric acid. Using the tartaric acid-modified optimized reagents, a detection limit of 0.6 μg P l?1 was achieved. The method was linear over the range 0–100 μg P l?1 with an excellent precision (r.s.d. 2.9% at 2.0 and 0.5% at 50 μg P l?1). An in-line pre-concentration anion-exchange column was used to obtain an even lower detection limit of 0.1 μg P l?1 and applied to the analysis of real samples.  相似文献   

7.
Inexpensive low-power diode laser-based forward-scattering degenerate four-wave mixing is demonstrated as an unusually simple and sensitive nonlinear laser spectroscopic technique. This novel semiconductor laser-based nonlinear method offers many important advantages including ease of optical alignment, high wave-mixing efficiency, as well as compact and inexpensive design. A preliminary concentration detection limit of 7.7 × 10−8 M, and a mass detection limit of 12 × 10−18 mol inside a probe volume of 159 pl, corresponding to an absorbance detection limit of 6.9 × 10−5 are reported for rhodamine 800 using a single 10 mW laser diode as the excitation source.  相似文献   

8.
Monodisperse and “naked” gold nanoparticles (GNPs) were modified with thioglycolic acid (TGA). The fluorescence of rhodamine B (RB) is quenched completely by the gold NPs surface with negative charge mainly as a result of fluorescence resonance energy transition (FRET) and collision. The quenching mechanism can be described by a Langmuir isotherm, which was systematically investigated by steady-state fluorescence spectrometry and absorption spectrometry. Hg(II) ion disrupts the GNPs–RB pair, producing a large “switch-on” fluorescence. A low background, highly sensitive and reproducible fluorescence assay for Hg(II) is presented. Under the optimum conditions, the restoration fluorescence intensity is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 1.0?×?10?9 to 3.1?×?10?8 mol L?1 with a detection limit of 4.0?×?10?10 mol L?1. The relative standard deviation was 1.2% for a 5.0?×?10?9 mol L?1 Hg(II) solution (N?=?6). This method was applied to the analysis of Hg(II) in environmental water samples, and the results were consistent with those of atomic absorption spectroscopy (AAS).  相似文献   

9.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   

10.
A novel turn-on rhodamine B-based fluorescent chemosensor (RBCS) was designed and synthesized by reacting N-(rhodamine B)lactam-1,2-ethylenediamine and carbon disulfide. Upon addition of Fe3+ in EtOH/H2O solution (2:1, v/v, HEPES buffer, 0.6?mM, pH 7.20), the RBCS displayed a significant fluorescence enhancement at 582?nm and a dramatic color change from colorless to pink, which can be detected by the naked eye. Significantly, the RBCS exhibited a highly selective and sensitive ability toward Fe3+. The detection limit of the probe was 2.05?×?10?7?M. Job's plot indicated the formation of 1:1 complex between the RBCS and Fe3+. Moreover, the practical use of the RBCS is demonstrated by its application in the detection of Fe3+ in HeLa cells.  相似文献   

11.
Electrooxidation of norepinephrine in the presence a nucleophile was investigated on a bare gold electrode. Electrochemically produced norepinephrinequinone undergoes an attack by morpholine as nucleophile via 1,4‐Michael addition. The reaction products were identified by electrospray ionization mass spectrometry. The procedure used was suitable for quantitative norepinephrine determination in the concentration range from 1×10?9 M to 8×10?4 M with a detection limit of 8.7×10?10 M in a samples containing an excess of ascorbic and uric acids. The proposed method is simple, green which means that it does not require the use of toxic compounds and solvents and thus is promising for detection of norepinephrine in physiological environment.  相似文献   

12.
A flow-injection method is described for the measurement of acid and fluoride concentrations. The conditions were optimized to ensure small sample and reagent consumption, low detection limit and the highest rate of analysis allowed by the potentiometric sensor. With a microcapillary pH-sensitive glass electrode, 20-μl sample volumes and 1.0–1.5 ml min?1 carrier flow rates, strong acids were determined at concentrations as low as 10?5 M (0.2 nmol of acid in 20 μ1). The relative standard deviation was about 1% at 10?4 M strong acid concentration at an injection rate of 500–550 h?1. With a flow- through fluoride-selective electrode, 250-μl sample volumes and a 1 ml min?1 carrier flow rates, fluoride concentrations as low as 10?7 M were measured (ca. 0.5 ng of fluoride in 250 μ1). The injection rate was 40 h?1 at concentrations below 10?6 M, but 60 h?1 above 10?5 M. The methods were used successfully for determining the acid and fluoride concentrations in rain-waters.  相似文献   

13.
The process of singlet—singlet resonance energy transfer between rhodamine 6G (donor) and malachite green (acceptor) has been studied with a picosecond laser : streak camera system. Unlike previous investigations, the measurements were conducted in a low viscosity solvent (ethanol) at room temperature. The donor fluorescence decay function was found to be in agreement with that predicted by the Förster theory over a tenfold range of acceptor concentrations (10?3 M to 10?2 M) and up to a limiting time resolution of 10 ps. An average R0 value of 52.5 A was obtained from the fluorescence decay curves, in reasonable agreement with the value of 48 A calculated from spectroscopic data.  相似文献   

14.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

15.
Here is reported a new application of polymer-enhanced capillary transient isotachophoresis for the separation and quantification of the drug digoxin and its primary metabolite digoxigenin coupled with laser-induced fluorescence (LIF) detection facilitated by labeling with two boronic acid-functionalized squarylium dyes of different alkyl side chain lengths, SQ-BA1 and SQ-BA2. The conditions for drug–dye complex formation were optimized, as determined by absorbance and fluorescence spectra, according to solution pH and buffer composition. As digoxin has a digitoxose sugar moiety in its structure, it was shown to exhibit better enhancement in the fluorescence intensity of both dyes than digoxigenin, which lacks this moiety, presumably through the formation of a cyclic boronate ester complex. A comparison of analyte labeling in pre-column and on-column modes was conducted in subsequent capillary electrophoresis-LIF studies, with the latter labeling mode yielding superior sensitivity. However, to achieve the complete resolution of labeled digoxin and digoxigenin analytes, it was necessary to use the modified isotachophoresis method, with added borate ions that may differentially interact with the drug and its metabolite, hence affecting their mobilities. Limits of quantification of the method for the determination of digoxin with SQ-BA1 and SQ-BA2 were 2.61?×?10?3 and 2.82?×?10?3?M and limits of detection were 7.83?×?10?4 and 8.47?×?10?4?M while sensitivities were as great as 5.06?×?109 and 2.89?×?109?M?1, respectively, indicating that the method is suitable for practical analysis.  相似文献   

16.
The anti myoglobin conjugated iron oxide/ru(bpy)32+/silica, anti myoglobin conjugated rhodamine 6G/silica particles were prepared, and used for myoglobin detections. The anti myoglobin conjugated iron oxide/ru(bpy)32+/silica particles were mixed with myoglobin in the micro centrifuge tube. After 10 min, the magnetic separators were introduced to catch the myoglobin‐captured anti myoglobin/iron oxide/ru(bpy)32+/silica particles from the homogenous solutions. For sandwich assays, the anti myoglobin conjugated rhodamine 6G/silica particles were incubated. The concentration of myoglobin was quantified based on anti myoglobin conjugated rhodamine 6G/silica particles. The calibration curve of the myoglobin showed the linear range to be between 1 × 10?12 and 1 × 10?10 (M) (R2 = 0.9944). The minimum detectable concentration was 17.6 pg/mL. The fluorescence method offered the best way to determine myoglobin with a total analysis time of less than 30 min.  相似文献   

17.
Highly sensitive, selective, reliable and inexpensive cholesterol biosensors are highly demanded for the routine monitoring of cholesterol molecules in order to prevent heart failure incidents. In this study, Co3O4 nanostructures are synthesized using polyvinyl pyrrolidone surfactant as growth template by a low temperature aqueous chemical growth method. The morphology of nanostructures was investigated by scanning electron microscopy and X‐ray diffraction techniques. The nanostructures exhibit interconnected nanowires like morphology with interconnected network of nanowires. The nanostructures of Co3O4 are polycrystalline. The cholesterol oxidase was physically adsorbed on the interconnected nanowires of Co3O4 for the chemical sensing of cholesterol molecules. The sensor device detected a wide range of cholesterol from 1×10?7 M to 1×10?3 M concentrations with sensitivity of ?94.031 mV/decade. A detection limit of 0.035×10?7 M cholesterol concentration was observed and a fast response time of 10 s was also noticed. The fabricated device is highly stable, selective, sensitive, reproducible and repeatable. All the collected information about presented cholesterol biosensor indicates its potential application for the monitoring of cholesterol concentrations from human blood serum and real‐life samples.  相似文献   

18.
A new microflow system was designed and developed for electrochemical measurements. The electrochemical electrodes prepared using thick film technology were used in this arrangement. Results of various measurements such as simple amperometric measurement on the example of H2O2 detection, measurement with glucose oxidase (GOx) biosensor, soluble enzyme activity measurement etc. carried out using this system are reported. It was observed that the sensitivity and reproducibility of the electrochemical measurements is improved significantly. The new device performance was proved on H2O2 detection, activity of GOx measurement and heavy metals detection (measured concentration range: H2O2 10?9 to 10?1 M, glucose 10?6 to 10?2 M, activity of GOx 10?1 to 102 IU, heavy metals (Cu, Pb) 10?4 to 10?3 M). The microflow insert greatly reduces the overall size of the electrolyte vessel and measurements with sample quantity as low as 2 mL can be accomplished.  相似文献   

19.
Differential pulse cathodic adsorptive stripping (DPCAdSV) and square wave cathodic adsorptive stripping (SWCAdSV) voltammetric methods were developed for the determination of antimony and lead in gunshot residues. Linear working ranges for DPCAdSV and SWCAdSV methods were (2.0×10?9–5.0×10?7) M and (2.0×10?9–7.0×10?7) M for antimony and 2.0×10?9–3.0×10?7 M (both methods) for lead. The detection of antimony limits were found to be 1.3×10?9 M for DPCAdSV and 7.3×10?10 M for SWCAdSV while the corresponding values for lead were 3.0×10?9 M and 5.8×10?10 M. Antimony and lead contents obtained by these methods in gunshot residues are in good agreement with those obtained by graphite furnace atomic absorption spectrometric method within a confidence limit of 95%.  相似文献   

20.
Based on the combination of colloidal‐crystal templating and a molecular imprinting technique, a sensor platform for efficient detection of atrazine in aqueous solution has been developed. The sensor is characterized by a 3D‐ordered interconnected macroporous structure in which numerous nanocavities derived from atrazine imprinting are distributed in the thin wall of the formed inverse polymer opal. Owing to the special hierarchical porous structure, the molecularly imprinted polymer opals (or molecularly imprinted photonic polymer; MIPP) allow rapid and ultrasensitive detection of the target analyte. The interconnected macropores are favorable for the rapid transport of atrazine in polymer films, whereas the inherent high affinity of nanocavites distributed in thin polymer walls allows MIPP to recognize atrazine with high specificity. More importantly, the atrazine recognition events of the created nanocavities can be directly transferred (label‐free) into a readable optical signal through a change in Bragg diffraction of the ordered macropores array of MIPP and thereby induce color changes that can be detected by the naked eye. With this novel sensory system, direct, ultrasensitive (as low as 10?8 ng mL?1), rapid (less than 30 s) and selective detection of atrazine with a broad concentration range varying from 10?16 M to 10?6 M in aqueous media is achieved without the use of label techniques and expensive instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号