首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of the chromate ion has been studied using a potentiometric-spectrophotometric automated titration system, titrating basic K2CrO4–KNO3 solutions with previously standarized HNO3–KNO3 solutions. The temperature was kept constant at 25°C and the ionic strengths were 0.5, 1.0 and 2.0 mol-dm–3. The resulting titration curves can be interpreted in terms of two equilibria involving the formation of HCrO 4 (aq) and Cr2O 7 2– (aq). A spectrophotometric batch study was also carried out in order to obtain the thermodynamic constant for the HCrO 4 (aq) formation as well as the spectrophotometric parameters at low ionic strengths. The proposed stoichiometric constants for the two reactions and the molar absorptivities for the three species at different wavelengths and ionic strengths are also given.  相似文献   

2.
The water activities for aqueous solutions of Li2SO4(aq), Na2SO4(aq), K2SO4(aq), (NH4)2SO4(aq), and sulphates MgSO4(aq), MnSO4(aq), NiSO4(aq), CuSO4(aq), and ZnSO4(aq) were determined experimentally at a temperature of 298.15 K with a hygrometric method, at molalities in the range from 0.1 mol·kg−1 to saturation. The osmotic coefficients are calculated from these results. The coefficients of Pitzer’s model was used to fit the osmotic coefficients for each salt solution. These parameters were used to predict solute activity coefficients for the salts studied.  相似文献   

3.
The spectra of copper(II)–ammonia solutions in 2 mol-kg–1 NH4NO3(aq) were recorded as a function of pH with a new UV–visible flow cell, capable of operating at conditions up to 325°C and 300 bars. Equilibrium constants for the formation of copper(II)–ammonia complexes Cu(NH3)n 2+, 1 n 4, from 30 to 150°C were determined by evolving factor analysis and nonlinear least-squares regression. Measurements at higher temperatures were limited by thermal decomposition of NH4NO3(aq). The formation constants of Cu(NH3)n 2+ decrease with temperature, consistent with extrapolations of literature data from measurements below 100°C. Measurements above 150°C were carried out in 0.5 mol-kg–1 CF3SO3H (aq), at the very high ammonia concentrations required to avoid the precipitation of CuO(s). The spectra are consistent with Cu(NH3)4 2+ as the predominant species, based on extrapolations of peak maxima and molar absorptivities from lower temperatures. Shifts in the spectra of Cu2+ and the Cu(NH3)n 2+ species to higher wavelength and increases in molar absorbance with increasing temperature are discussed in terms of the structure of the complexes.  相似文献   

4.
Water activities of aqueous electrolyte solutions of HCl(aq), LiCl(aq), NaCl(aq), KCl(aq), CsCl(aq), NH4Cl(aq), MgCl2(aq), CaCl2(aq), and BaCl2(aq) have been determined at T =  298.15 K by the hygrometric method, and at molalities ranging from 0.2 mol · kg  1to saturation. From measurements of droplets diameters of reference NaCl(aq) or LiCl(aq), the dependence of relative humidity on solute concentration was determined. The data on the relative humidities allow the deduction of water activities and the osmotic coefficients at different molalities. Osmotic coefficient data have been described by the ion interaction model of Pitzer. The ion interaction parameters were also determined for each of the studied salts. With these parameters, the solute activity coefficients can be predicted. Our present results have been compared with reported thermodynamic data.  相似文献   

5.
Apparent molar heat capacities and volumes have been determined for aqueous solutions of the mixed electrolytes Na5DTPA + NaOH, Na3CuDTPA + NaOH, and NaCu2DTPA + NaOH, and the single electrolyte Na3H2DTPA (DTPA=diethylenetriaminepentaacetic acid) at temperatures from 10 to 55°C. The experimental results have been analyzed in terms of Young's rule with the Guggenheim form of the extended Debye–Hückel equation and the Pitzer ion-interaction model. These calculations led to standard partial molar heat capacities and volumes for the species H2DTPA3–(aq), DTPA5–(aq), CuDTPA3–(aq), and Cu2DTPA(aq) at each temperature. The partial molar properties at 0.1 m ionic strength were also calculated. The standard partial molar properties were extrapolated to elevated temperatures with the revised Helgeson–Kirkham–Flowers (HKF) model. Values for the partial molar heat capacities from the HKF model have been combined with the literature data to estimate the ionization constants of H2DTPA3–(aq) and the formation constant of the CuDTPA3–(aq) copper complex at temperatures up to 300°C.  相似文献   

6.
A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species as a function of temperature. Measurements were made for NaTcO4(aq) at six temperatures (189.15 K to 373.15 K for the heat capacities, 287.43 K to 396.67 K for the densities) over the molality range 0.01 to 0.29 mol-kg–1. Measurements for NaReO4(aq) (NaReO4 is a common nonradioactive analogue for NaTcO4) were made under similar conditions, but for eight temperatures and a more extensive range of molalities, 0.05 to 0.65 mol-kg–1. Heat capacities of NaCl(aq) reference solutions were also measured from 293.15 K to 398.15 K.The heat capacity and density data are analysed using Pitzer's ioninteraction model. Equations for the apparent molar heat capacities and volumes are reported. Values of the NaReO4(aq) partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO4 results is good below 330 K, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. Using literature values and the results of our experiments, it is calculated that the disproportionation of hydrated TcO2(s) to form TcO 4 (aq) and Tc(cr) occurs more readily at high temperatures. The uncertainties introduced by using thermodynamic values for ReO 4 (aq), in the absence of values for TcO 4 (aq), are discussed.  相似文献   

7.
A spectral study of ascorbic acid was made in buffer solutions of different pH. The molar absorptivities of the unionized (?HA) and ionized (?A-) forms of ascorbic acid were determined at six wavelengths. An isosbestic point occurs at 250.7 nm; the molar absorptivity at this wavelength is 8250 ± 150 l mol-1 cm-1. The spectral information presented is of importance for the spectrophotometric assay of samples containing vitamin C.  相似文献   

8.
Aqueous solutions of nickel(II) and cobalt(II) sulfate have been investigated at 25 C by dielectric relaxation spectroscopy (DRS) over a wide range of frequencies (0.2 ≤ ν (GHz) ≤ 89) and salt concentrations (0.025 ≤ c(mol-L−1) ≤ 1.4). The spectra indicate, as for MgSO4(aq) studied previously, the simultaneous presence of double solvent-separated, solvent-shared and contact ion pairs in both NiSO4(aq) and CoSO4(aq). The stepwise formation constants for each ion-pair type and the overall association constant, obtained from the data are in good agreement with ultrasonic relaxation and other estimates. The DR spectra at higher concentrations (c ≥ 0.5 mol-L−1) suggest the existence of a nonlinear triple ion M2SO42+(aq). Consistent with the very strong hydration of the salts, which have ‘effective’ hydration numbers approaching 27 at infinite dilution, there are no significant differences in any of the relaxation or thermodynamic parameters for NiSO4(aq) and CoSO4(aq), except that the triple ion appears to be somewhat more stable for the latter.  相似文献   

9.
The aqueous chemistry of phosphorus is dominated by P(V), which under typical environmental conditions (and depending on pH and concentration) can be present as the orthophosphate species H3PO 4 0 (aq),H2PO 4 ? (aq),HPO 4 2? (aq) or PO 4 3? (aq). Many divalent, trivalent and tetravalent metal ions form sparingly soluble orthophosphate phases that, depending on the solution pH and concentrations of phosphate and metal ions, can be solubility limiting phases. Geochemical and chemical engineering modeling of solubilities and speciation require comprehensive thermodynamic databases that include the standard thermodynamic properties for the aqueous species and solid compounds. The most widely used sources for standard thermodynamic properties are the NBS (now NIST) Tables (from 1982 and earlier, with a 1989 erratum) and the final CODATA evaluation (1989). However, a comparison of the reported enthalpies of formation and Gibbs energies of formation for key phosphate compounds and aqueous species, especially H2PO 4 ? (aq) and HPO 4 2? (aq), shows a systematic and nearly constant difference of 6.3 to 6.9 kJ?mol?1 per phosphorus atom between these two evaluations. The existing literature contains numerous studies (including major data summaries) that are based on one or the other of these evaluations. In this report we examine and identify the origin of this difference and conclude that the CODATA evaluation is more reliable. Values of the standard entropies of the H2PO 4 ? (aq) and HPO 4 2? (aq) ions at 298.15 K and p?° =1 bar were re-examined in the light of more recent information and data not considered in the CODATA review, and a slightly different value of S m o (H2PO 4 ? , aq, 298.15 K) = (90.6±1.5) J?K?1?mol?1 was obtained.  相似文献   

10.
Isopiestic measurements have been made for LiCl (aq) and CsCl (aq) at a temperature of 155°C. Equilibrium molalities ranged up to 21 mol-kg–1. MgCl2(aq) was chosen as the reference electrolyte. The apparatus used for the isopiestic experiments is an enhanced version of that developed by Grjotheim and co-workers. To test its precision osmotic coefficients of CaCl2 (aq) have also been determined and compared with previously reported vapor pressure measurements at high concentrations. The results show a very good coincidence. The data can be described by the ion interaction model of Pitzer. The resulting set of parameters allows a fit of the experimental osmotic coefficients with a standard error of 0.0078 and 0.0114 for LiCl(aq) and CsCl (aq), respectively. The osmotic coefficients of LiCl are consistent with data at lower molalities, but there are discrepancies for the CsCl solutions.  相似文献   

11.
The thermodynamic properties of LiNO3(aq.), NaNO3(aq.), KNO3(aq.), NH4NO3(aq.), Mg(NO3)2(aq.), Ca(NO3)2(aq.), and Ba(NO3)2(aq.) have been determined at 25°C by the hygrometric method for molalities, ranging from 0.1 mol-kg–1 to saturation. From measurements of droplet diameters of reference solutions NaCl(aq.) or LiCl(aq.), the dependence of relative humidity on solute concentration was determined. The data on the relative humidity allow deduction of water activities and the osmotic coefficients at various molalities. Osmotic coefficient data are described by Pitzer's ion interaction model. The ion interaction parameters were also determined for each of the salts studied. With these parameters, the solute activity coefficients can be predicted. These results are used to calculate the excess Gibbs energy for these aqueous electrolyte nitrates. Our present results are compared with published thermodynamic data.  相似文献   

12.
The paper presents experimental data and an analysis of literature data on hydrogen peroxide forms in concentrated solutions of sulfuric acid, H2O2(aq), H3O 2 + (aq), and HSO 5 ? (aq). The thermodynamic constants of the parallel equilibria $\begin{array}{*{20}c} {H_2 O_2 (aq) + H_3 O^ + (aq) \Leftrightarrow H_3 O_2^ + (aq) + H_2 O (K_1 (298) = 8 \times 10^{ - 4} ),} \\ {H_2 O_2 (aq) + HSO_4^ - (aq) \Leftrightarrow HSO_5^ - (aq) + H_2 O (K_2 (298) = 1.2 \times 10^{ - 2} )} \\ \end{array} $ were determined. The activity coefficients of H2O2 and Henry constants for solutions of H2O2 in sulfuric acid were calculated.  相似文献   

13.
A rapid and sensitive method for the photometric determination of trace amounts of neptunium and plutonium from their mixtures is described. Np(IV) is selectively extracted from about 1 M HNO3 medium with TTA in xylene retaining Pu in the nonextractable trivalent state in the aq. phase with ferrous sulfamate. Plutonium in the aqueous phase is subsequently oxidized with NaNO2 to the highly extractable tetravalent state and extracted with TTA. Np(IV) as well as Pu(IV) thus extracted are finally estimated in the organic phase itself spectrophotometrically employing xylenol orange as the chromogenic reagent. Their molar absorptivities are in the 5 × 104 range. Beer's law is valid up to 2.4 ppm Np and 3.5 ppm Pu. The color of the solutions is stable for at least 48 hr. The method tolerates large excess of several common contaminants encountered during spent fuel reprocessing. Cerium(IV) and phosphoric acid, however, interfere with the final estimation.  相似文献   

14.
Apparent molar heat capacities and volumes have been determined for aqueous Na2HNTA, Na3NTA, NaMgNTA, NaCoNTA, NaNiNTA and NaCuNTA at 25 °C. The experimental results have been analyzed in terms of Young’s rule with an extended Debye–Hückel equation to obtain standard partial molar heat capacities C p o and volumes V o for the species HNTA2−(aq), NTA3−(aq), MgNTA(aq), CoNTA(aq), NiNTA(aq) and CuNTA(aq), at ionic strengths I = 0 and I = 0.1 mol⋅kg−1. Values of C p o and V o were combined with the literature data to estimate the stability constants of the NTA complexes at temperatures up to 100 °C.  相似文献   

15.
Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01  m/(mol · kg−1)  0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vφ,2 and Cpφ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature.Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V2(H+(aq))  0 and Cp2(H+(aq))  0 and have been compared to other values reported in the literature.  相似文献   

16.
The composition, formation constants, and molar absorptivities of the chelates of zirconium ion wtih xylenol orange and semi-xylenol orange are investigated spectrophotometrically in strong acid medium at ionic strength 3.0 (NaClO4 and HClO4). The data obtained were processed with a newly-constructed computer program and with LETAGROP/SPEFO. In the zirconium—xylenol orange system, Zr · H3 L, Zr· H4L, and Zr2 · L are present with logarithmic overall formation constants of 37.80, 38.68, 43.47, and molar absorptivities of 3.10 × 104 (485 nm), 5.98 × 104 (528 nm), 9.50 × 104 (551 nm) I mol-1 cm-1, respectively. The chelates Zr · L and Zr · HL were found in the zirconium—semi-xylenol orange system with logarithmic overall formation constants of 26.25 and 27.56, and molar absorptivities of 5.70 × 104 (532 nm) and 8.30 × 104 (535 nm) 1 mol-1 cm-1, respectively. Semi-xylenol orange is more sensitive and reliable than xylenol orange as a spectrophotometric reagent for zirconium.  相似文献   

17.
Diaphragm cells have been used to measure ternary diffusion coefficients for I2+NaI and I2+KI in aqueous solution at 25°C. Although most of the iodine molecules are bound to iodide ions and are transported as the triiodide species [I2(aq)+I(aq)=I 3 (aq)], diffusion of the iodide salts produces relatively small countercurrent coupled flows of the iodine component. The ternary diffusivity of the iodine component in the solutions is 10 to 20% larger than the diffusivity of the triiodide species. This behavior can be understood by considering electrostatic coupling of the ionic flows. The diffusion equations for I2+NaI and I2+KI components are reformulated in terns of NaI3+NaI and KI3+KI mixed electrolyte components.  相似文献   

18.
The hydrolysis of chromate ion was studied potentiometrically in a concentration cell fitted with hydrogen electrodes by titrating basic NaCl–Na2CrO4 solutions with standardized HCl against a NaOH reference solution. The temperature was varied from 25 to 175°C at 25° intervals at the following ionic strengths (I): 0.1140, 0.2346, 0.5337, 0.9988, 2.940, and 5.239 (NaCl). Depending on the ionic strength, the molality of total chromium was varied from 0.001 to 0.100. The resulting titration curves could be resolved best in terms of three equilibria involving the formation of HCrO 4 (aq), Cr2O3– (aq), and CrO3Cl (aq). The equilibrium quotients for all three reactions were fitted as a function of temperature and ionic strength, and the molal thermodynamic parameters that were computed from these relationships are tabulated at specific ionic strengths over the experimental temperature range.  相似文献   

19.
A pure mixed alkali–alkaline earth metal borate of Li2Sr4B12O23 with microporous structure has been synthesized by high-temperature solid state reaction, and characterized by XRD, FT-IR, TG techniques, and chemical analysis. The molar enthalpies of solution of Li2Sr4B12O23 in 1 mol L?1 HCl(aq), and of SrCl2·H2O(s) in [1 mol L?1 HCl + H3BO3 + LiCl·H2O](aq) have been determined by microcalorimeter at 298.15 K, respectively. From these data and with the incorporation of the previously determined enthalpies of solution of H3BO3(s) in 1 mol L?1 HCl(aq), and of LiCl·H2O(s) in [1 mol L?1HCl + H3BO3](aq), together with the use of the standard molar enthalpies of formation for SrCl2·6H2O(s), LiCl·H2O(s), H3BO3(s), HCl(aq), and H2O(l), the standard molar enthalpy of formation of ?(11,534.0 ± 10.0) kJ mol?1 for Li2Sr4B12O23 was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

20.
Calorimetric measurements of the enthalpy of reaction of WO3(c) with excess OH?(aq) have been made at 85°C. Similar measurements have been made with MoO3(c) at both 85 and 25°C, to permit estimation of ΔH°=?13.4 kcal mol?1 for the reaction WO3(c)+2OH?(aq)=WO2?4(aq)+H2O(liq) at 25°C. Combination of this ΔH° with ΔH°f for WO3(c) leads to ΔH°f=?256.5 kcal mol?1 for WO2?4(aq). We also obtain ΔH°f=?269.5 kcal mol?1 for H2WO4(c). Both of these values are discussed in relation to several earlier investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号