首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver in solution is determined in situ by frequency change of a piezoelectric quartz crystal due to electrodeposition on the electrode of the crystal immersed in the solution. A test solution containing EDTA for masking other metal ions flows through a thermostated cell which contains the crystal with platinum-plated electrodes. The frequency change is proportional to the silver concentration in the range 10?6?3 × 10?5 M after electrodeposition for 10 min, and 2 × 10?7?1 × 10?6 M for 1 h.  相似文献   

2.
A method for the determination of trace amounts of silver with a chemically modified carbon paste electrode is described. The modified electrode is prepared by simply mixing a chelating resin (a polythioether backbone and dioxymonosulphur polyethylene polyimines in the side-chain polymer) with graphite powder and Nujol oil. By immersing the electrode in a silver sample solution (pH = 6.5–7.5), silver can be adsorbed on the electrode surface and then determined by voltammetry in a separate blank solution. The response depends on the concentration of silver and the preconcentration time. For a preconcentration time of 5 min, the detection limit is about 3 × 10?10 M and the linear range is from 5 × 10?10 to 1 × 10?7 M with a relative standard deviation of 4%. Many common metal ions have no or little effect on the determination of silver. The recommended procedure was applied to the determination of trace amounts of silver in waste water.  相似文献   

3.
Features of the kinetics of ozone decomposition in water at pH 2 are studied depending on the concentration of silver and copper ions that are present. The existence of a critical concentration of metal ions (??3?6 × 10?6 M) is established, below which ions slow the rate of ozone decomposition and above which the accelerate the process. It is concluded that the first region is due to the capture of hydroxyl and other radicals by metal ions, inhibiting the chain of ozone decomposition in water. A further increase in the concentration of ions leads to dominance of their direct interaction with molecules of ozone. A mechanism for the process is proposed and the rate constants of reaction of ozone with silver ions and copper are calculated (0.033 and 0.06 M?1 s?1, respectively).  相似文献   

4.
A composite film of ethylenediamine tetraacetic acid (EDTA)‐ZrO2 organic‐inorganic hybrid was prepared based on the chelation between Zr(IV) and EDTA. The direct electrochemical behavior of cytochrome c (cyt. c) at the hybrid film modified glassy carbon electrodes was investigated. The immobilized EDTA can promote the redox of heme in horse heart cyt. c which gives rise to a pair of reversible redox peaks with a formal potential of 40 mV (vs. SCE). The peak current increased linearly with the increase of cyt. c concentration in the range of 1.6 × 10?6—8.0 × 10?5 mol·L?1 with the correlation coefficient of 0.996. Further investigation shows that metal ions can impede the electron transfer of cyt. c. The impediment capability of metal ions depends on their coordination capability with EDTA and their valence number.  相似文献   

5.
2,5-Dioxo-4-imidazolidinyl was used as an excellent sensing material in the preparation of a PVC membrane for a Ce(III)-selective sensor. The electrode shows a good selectivity for the Ce(III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. The developed sensor exhibits a wide linear response with a slope of 19.6?±?0.3 mV per decade over the concentration range of 1.0?×?10?6 to 1.0?×?10?1 M, while the illustrated detection limit is 5.7?×?10?7 M of Ce(III) ions. Moreover, it is concluded that the sensor response is pH-independent in the range of 3.1–9.8. The applications of the recommended electrode include the determination of concentration of Ce(III) ions in soil and sediment samples, validation with CRM's, and the Ce(III) ion potentiometric titration with EDTA as an indicator electrode.  相似文献   

6.
A new podand of 1,1′‐thia‐bis‐[1‐(chloroethan‐2‐acetamid‐α‐oxy)] naphtol was synthesized and used as a suitable carrier for Ag+ PVC membrane electrode. The electrode exhibited linear response with a Nernstian slope of (59.5±0.8 mV/decade) within a wide concentration range of 1.0×10?7 to 1.5×10?2 mol L?1 silver ions. The electrode had a fast response time of <10 s and detection limit of 8.6×10?8 mol L?1 with a working pH range from 3.7 to 9.0. The electrode was highly selective for Ag(I) ions over a large number of cations such as alkali, alkaline earth, and heavy metal ions. The proposed sensor has been applied as an indicator electrode for indirect determination of vitamin B1 in tablets by determination of Cl? ions in this compound with a standard solution of Ag(NO3).  相似文献   

7.
Acibenzolar‐S‐methyl (ASM) is a novel fungicide applied for crop protection. A renewable silver amalgam film electrode was used for the determination of ASM in pH 3.4 Britton? Robinson buffer using square wave adsorptive stripping voltammetry (SW AdSV). The parameters of the method were optimized. The electroanalytical procedure made possible to determine ASM in the concentration range of 5×10?8–3×10?7 mol L?1 (LOD=4.86×10?9, LOQ=1.62×10?8 mol L?1). The effect of common interfering pesticides and heavy metal ions was checked. The validated method was applied in ASM determination in spiked water samples.  相似文献   

8.
Herein, we find that the surface plasmon resonance (SPR) spectra of silver nanoprisms in the presence of halide ions change gradually with reaction time. The changes in the spectra correspond to the shape transformation of silver nanoprisms. There are threshold concentrations of halide ions that initiate the shape‐transformation reaction. The threshold concentrations for Cl?, Br?, and I? are about 3×10?4 M , 1×10?6 M , and 1.5×10?6 M , respectively. Any concentrations of the added halide ions above these thresholds can eventually etch the silver nanoprisms into nanodisks if the reaction time is long enough. The higher the concentration of the halide ions, the higher the etching rate will be. The kinetics of the shape transformation of the silver nanoprisms can be studied by recording their time‐dependent surface plasmon resonance (SPR) spectra on a commercial UV/Vis–NIR spectrometer. The peak positions of in‐plane dipole SPR bands of silver colloids in the presence of chloride and bromide ions can be fitted very well with the biexponential functions. We propose that the fast components of the biexponential behaviors should correlate to the truncating effect on the corners of silver nanoprisms, and the slow component should correlate to the redeposition of the truncated residues onto the basal plane of the nanoplates.  相似文献   

9.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

10.
《Analytical letters》2012,45(8):1873-1896
Abstract

A flow system incorporating an amperometric glucose oxidase enzyme electrode has been used to study the inhibitory effects of 16 metal cations on glucose oxidase. Only copper(II), mercury(II) and silver(I) caused any significant inhibition. the enzyme electrode could be reactivated by EDTA, the reactivation being most effective for copper(II) and least so for silver(I). Other complexing agents were tried for reactivation but proved to be unsatisfactory.

The ability to reactivate the enzyme on the electrode following copper(II) inhibition, and the linear response of the system to the level of this inhibitor according to I/A = -9.49 × 10?7 log([Cu]/M) + 4.84 × 10?8; r = 0.994 between 2.5 × 10?4M and 5 × 10?3M [Cu]2+ indicates a prospect for the use of a flow system for determining enzyme inhibitors in samples.  相似文献   

11.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

12.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

13.
陈万喜  蒋化  徐铸德  陆云 《中国化学》1999,17(2):125-131
SERS technique was used to study the chemisorption kinetics of Methylene Blue (MB) on the HNO3-etched silver surface. The adsorption kinetic parameters were deduced from different vibrational modes at a low concentration of 3.5×10-6 mol/L, and it showed that MB adsorbed uniformly (monolayerly) on silver surface. However, the adsorptive behavior turned anomalous at relatively higher concentrations and a possible explanation was suggested. In addition, the influence of Cl- ions on the adsorption states of MB was investigated, and it was shown that MB molecules, adsorbed on the silver surface, tended to transform from the "lying-down" state to the "end- on"4 state after Cl- ions were added.  相似文献   

14.
《Analytical letters》2012,45(14):2710-2726
Abstract

A PVC membrane electrode for dysprosium(III) [Dy(III)] ions was constructed, having its basis on benzoxazoleguanidine (BG) as a suitable ionophore. The sensor presents a linear dynamic range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 19.5 ± 0.4 mV decade?1 and a detection limit of 4.7 × 10?7 M. The response time is quick (less than 10 s). It can be used in the pH range of 3.3–8.4, and its duration is at least 2 mo without any considerable, noticeable potential divergence. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition, and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor also applied to the determination of concentration of Dy(III) ions in soil and sediment samples. Validation with certified reference materials (CRMs) was also carried out.  相似文献   

15.
《Analytical letters》2012,45(8):1413-1427
Abstract

A flow-injection configuration for the spectrophotometric determination of oxalate, citrate and tartrate is proposed. The procedure is based on the photochemical decomposition of the complexes formed between iron(III) and these anions. The iron(II) produced in the photochemical reactions was detected by measuring the absorbance after complexation with ferrozine (λmax=562 nm). Linear calibration graphs were obtained over the concentration ranges 5.0 × 10?6 - 1.0 × 10?4 M, 8 × 10?6 - 1.8 × 10?4 M and 1.0 × 10?6 - 2 × 10?5 M for oxalate, citrate and tartrate, respectively. The relative standard deviations at the 1x10?5 M concentration level were within the range 1.29 - 1.47 %. The sampling frequency was about 40 samples h?1. The usefulness of the method was tested in the determination of oxalate in urine and spinach, of citrate in pharmaceuticals and soft drinks and of tartrate in pharmaceuticals. For the determination of oxalate in urine samples a prior separation of the analyte by precipitation with calcium chloride is recommended.  相似文献   

16.
The electrochemical impedance spectroscopy (EIS) has been used to study the interaction between paraquat and carbon modified by silver (Ag? CPE) and silver particles‐impregnated natural phosphate (Ag/NPh? CPE). This study was developed using spectrophotometry (UV? Vis) and infrared spectroscopy. The resulting interaction was controlled by adsorption at lower concentration (≤1.0×10?5 mol L?1) and by diffusion in the opposite case. Both electrodes are used to determining paraquat with a low detection limit (<1.0×10?12 mol L?1). The precision expressed as relative standard deviation RSD for the concentration level 1.0×10?5 mol L?1 of paraquat, (n=8) were 0.93 % and 1.1 % for Ag/NPh? CPE and Ag? CPE respectively.  相似文献   

17.
Polarographic (d.c.) measurements showed that complex ions of uranium(VI) with catechol adsorb on the dropping mercury electrode. This effect is used to determine uranium(VI) directly in sea water. Optimal conditions include pH 6.8, 2 × 10?3 M catechol, and a collection potential between ?0.1 and ?0.4 V (vs. Ag/AgCl) at a hanging mercury drop electrode. The cathodic scan is made with the linear-scan or differential-pulse mode (d.p.c.s.v.). The detection limit with the d.p.c.s.v, mode is 3 × 10?10 M after a collection period of 2.5 min. Between pH 6 and 8, the peak height increases with pH and with catechol concentration up to 5 × 10?3 M. There is linear relationship between the collection time and the measured peak height until the drop surface becomes saturated. With a collection period of 3 min, the reduction current increases linearly with the metal concentration up to about 5 × 10?3 M U(VI). The maximum adsorption capacity of the mercury drop is 4.4 × 10?10 mol cm2; each complex ion then occupies 0.38 nm2, equivalent to the size of about one catechol molecule. Interference by high concentrations of Fe(III) is overcome by selectively adsorbing U(VI) at a collection potential near the reduction potential of Fe(III). Organic surfactants reduce the peak height for uranium by up to 75% at unnaturally high concentrations only (4 mg l?1 Triton X-100). Competition by high concentrations of Cu(II) for space on the surface of the drop is eliminated by addition of EDTA.  相似文献   

18.
《Electroanalysis》2005,17(22):2032-2036
We found that bis(thiophenal) pyridine‐2,6‐diamine (BPD) can be used as an excellent ion carrier to prepare a gadolinium‐selective PVC‐based membrane sensor. The use of oleic acid (OA) and potassium tetrakis(p‐chlorophenyl borate)(KTKpClPB), as anionic additives, and dibutyl phthalate (DBP), acetophenone (AP) and nitrobenzene (NB), as plasticizing solvent mediators was investigated. The best performance was observed with a membrane having the composition of 30% PVC; 62% BA; 5% BPD; and 3% KTKpClPB. The resulting sensor works well over a relatively wide concentration range (1.0×10?6–1.0×10?1 M) with a Nernstian slope of 19.4±0.4 mV per decade of gadolinium activity over a wide pH range (3.5–8.0). The limit of detection of the sensor is 7.0×10?7 M (ca. 110 ng mL?1). The proposed electrode shows excellent discriminating ability toward gadolinium ions with regard to common alkali, alkaline earth, transition, heavy metal ions, and specially, lanthanide ions. The proposed sensor was applied as an indicator electrode for titration of gadolinium ions with EDTA.  相似文献   

19.
《Analytical letters》2012,45(7-8):825-835
Abstract

The flow injection technique is shown to provide fast, reliable and sensitive determination of solubility product constants of silver acetate, silver sulfate, silver oxide, silver bromate and silver chloride in microliter volume samples. Potentiometric detection using electrodes of the first kind and second kind was used for measuring silver ions and chloride ions, respectively. The solubilities were determined from measurement of the silver ion concentration in the saturated solutions. In the case of silver chloride, the solubility product constant was calculated from the concentrations corresponding to the intersection of the silver ion calibration curve and the chloride ion calibration curve, i.e., where the potentials of the two electrodes are equal. Tenth-molar sodium nitrate was used for all solutions to maintain constant ionic strength. At a concentration range of 1.00 × 10?2 ? 1.00 × 10?5 M silver, and 1.00 × 10?2 ? 1.00 × 10?4 M chloride, a Nernstian response of 60 m V per decade was obtained. At a sampling rate of 50–70 samples per hour, with 50 μl sample injections, high reproducibility of measurements was achieved, with a -pL 2% relative standard deviation in measured concentrations. The scope and applications of this system are discussed.  相似文献   

20.
Sodium and potassium ions in waters are determined by flow-injection extraction-spectrophotometry. The ion-association complexes formed between the metal/crown ether cations and the tetrabromophenolphthalein ethyl ester anion (TBPE-) are extracted into chlorobenzene/benzene (1:3) and the absorbance of the organic phase is measured after phase separation with a porous membrane. Sodium and potassium are separated on-line with a column (1 mm i.d.×30 cm) packed with silica gel (100-200 mesh). The manifold comprises four streams, each at 0.8 ml min?1. The sample is injected into a water stream and mixed with a reagent stream containing lithium acetate and benzo-18-crown-6 before entering the silica gel column; after the separation, the stream is mixed with EDTA (trilithium salt) and lithium hydroxide, and then with the extraction solution containing TBPE.H. Extraction proceeds in a 2-m coil; the absorbance of the organic phase is measured at 620 nm. CAlibration graphs are linear inthe ranges 0–×10?3 M sodium and 0–2×10?4 M potassium. The sample throughput is 15 h?1. The procedure is applicable to river and tap waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号