首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nigo S  Yoshimura K  Tarutani T 《Talanta》1981,28(9):669-674
A trace method for iron, based on ion-exchanger colorimetry, has been developed. 1,10-Phenanthroline is used as the colour reagent for iron(II) and citrate as the masking reagent for iron(III). Total iron can be determined after reduction of iron(III) to iron(II) with hydroxylamine. It is possible to determine iron at mug/l.-levels in different oxidation states in natural waters.  相似文献   

2.
《Electroanalysis》2006,18(1):35-43
A new method is presented for the determination of electrochemically labile iron in estuarine and coastal seawater. The method is based on differential pulse anodic stripping voltammetry (DPASV) at a rotating silver‐alloy disk electrode. The voltammetric parameters include a plating potential of ?1.5 V and an activation potential of ?5 V for 10s; the seawater is at the original sample pH. The main finding is the presence of a peak for low nmol L?1 levels of iron at ?0.55 V ascribed to elemental iron deposited on the bare silver alloy electrode. The peak increased linearly with the iron concentration between <1 and 14 nmol L?1 using a 900 s plating time. At higher concentrations an additional iron peak appeared at ?0.7 V which was also found to increase linearly with the iron concentration but at a higher concentration range from ca. 15 to 90 nmol L?1 using a 300 s plating time. The second peak was ascribed to iron deposited on iron. Additions of chelating agents (EDTA and a siderophore) to seawater caused the iron peak to be masked indicating that this method is suitable for iron speciation as only the electrochemically labile fraction is determined. The detection limit was 0.3 nmol L?1 using a 900 s plating time. The method was used to determine iron in the range of 5 to 50 nmol L?1 in samples from the Mersey estuary near Liverpool and its potential use for in situ monitoring was demonstrated by using it to monitor labile iron (at 2–3 nmol L?1) over a period of 4 days at 1 h intervals in coastal waters in the Trondheim fjord, Norway.  相似文献   

3.
Mochizuki T  Toda Y  Kuroda R 《Talanta》1982,29(8):659-662
A flow-injection method is described for the spectrophotometric determination of total iron and aluminium in silicate rocks. Rock samples are opened up by fusion with a mixture of lithium carbonate and boric acid, the melt is taken up in 1M hydrochloric acid and the resulting solution is used for the determination of both iron and aluminium. The flow system for the determination of iron needs no particular reagents, involving simply measurement of the absorbance of the chloro-complex of iron(III) at 335 nm. The system for aluminium consists of the reduction of iron(III) to iron(II), colour development with Xylenol Orange (XO), destruction of XO-chelates other than that of aluminium by addition of EDTA and subsequent measurement of the absorbance of the aluminium-XO complex at 506 nm. The systems permit semi-automatic, rapid analysis of silicate rocks for iron and aluminium. Results obtained for standard rocks were in good agreement with the recommended values. The precision ranged from 0.1 to 0.9% for iron and from 0.3 to 0.7% for aluminium.  相似文献   

4.
A kinetic spectrophotometric method that requires no prior measurement of rate constants is developed for the simultaneous determination of iron(II) and iron(III). The method is based on the aerial oxidation of iron(II) in the presence of tiron and acetate ions. The iron(III) formed is subsequently complexed with tiron and the absorbance/time relation is evaluated. The concentrations of iron(III) and iron(II) are obtained from the absorbance values at the start and at equilibrium, respectively, calculated by non-linear least-squares fitting. A linear calibration graph is obtained up to 12 μg ml?1 iron(II)/iron(III). The method is applied to iron-rich ground water.  相似文献   

5.
Photoelectrocatalytic disinfection of E. coli by an iron doped TiO(2) sol-gel electrode is shown to be more efficient than disinfection by the corresponding undoped electrode. Thus, the improvements in photocatalytic efficiency associated with selective doping have been combined with the electric field enhancement associated with the application of a small positive potential to a UV irradiated titanium dioxide electrode. The optimum disinfection rate corresponds to the replacement of approximately 0.1% of the Ti atoms by Fe. The enhanced disinfection associated with iron doping is surprising because iron doping decreases the photocurrent, and photocurrent is generally taken to be a good indicator of photoelectrocatalytic efficiency. As the level of iron is increased, the character of the current-voltage curve changes and the enhancement of photocurrent associated with methanol addition decreases. This suggests that iron reduces the surface recombination which in the absence of iron is reduced by methanol. Therefore the enhanced photocatalysis is interpreted as due to iron reducing surface recombination, by trapping electrons. It is proposed that at low iron levels the photo-generated electrons are trapped at surface Fe(III) centres and that consequently, because the electron-hole recombination rate is reduced, the number of holes available for hydroxyl radical formation is increased. It is also proposed that at higher iron levels, the disinfection rate falls because electron hole recombination at iron centres in the lattice reduces the number of holes which reach the surface. Our conclusion that the optimum electrode performance is a balance between surface and bulk effects is consistent with the proposal, of earlier authors for photocatalytic reactions, that the optimum dopant level depends on the TiO(2).  相似文献   

6.
A flow injection procedure for the sequential spectrophotometric determination of iron(II) and iron(III) in pharmaceutical products is described. The method is based on the catalytic effect of iron(II) on the oxidation of iodide by bromate at pH = 4.0. The reaction was monitored spectrophotometrically by measuring the absorbance of produced triiodide ion at 352 nm. The activating effect for the catalysis of iron(II) was extremely exhibited in the presence of oxalate ions, while oxalate acted as a masking agent for iron(III). The iron(III) in a sample solution could be determined by passing through a Cd-Hg reductor column introduced in the FIA system to reduce iron(III) to iron(II), which allows total iron determination. Under the optimum conditions, iron(II) and iron(III) could be determined over the range of 0.05 - 5.0 and 0.10 - 5.0 microg ml(-1), respectively with a sampling rate of 17 +/- 5 h(-1). The experimental limits of detection were 0.03 and 0.04 microg ml(-1) for iron(II) and iron(III), respectively. The proposed method was successfully applied to the speciation of iron in pharmaceutical products.  相似文献   

7.
Teshima N  Ayukawa K  Kawashima T 《Talanta》1996,43(10):1755-1760
A flow injection analysis (FIA) method is presented for the simultaneous determinations of iron(III)-vanadium(V) and of iron(III)-chromium(VI) using a single spectrophotometric detector. In the presence of 1,10-phenanthroline (phen), iron(III) is easily reduced by vanadium(IV) to iron(II), followed by the formation of a red iron(II)-phen complex (lambda(max) = 510 nm), which shows a positive FIA peak at 510 nm corresponding to the concentration of iron(III). On the other hand, in the presence of diphosphate the reductions of vanadium(V) and/or chromium(VI) with iron(II) occur easily because the presence of diphosphate causes an increase in the reducing power of iron(II). In this case iron(II) is consumed during the reaction and a negative FIA peak at 510 nm corresponding to the concentration of vanadium(V) and/or chromium(VI) is obtained. The proposed method makes it possible to obtain both positive (for iron(III)) and negative (for vanadium(V) or chromium(VI)) FIA peaks with a single injection.  相似文献   

8.
Although oxidation/passivation of iron in basic solution has been extensively investigated, there is very little information on iron corrosion in weak acidic solutions. In this work, iron surface composition and structure, produced in aerobic aqueous solutions ranging from pH 2 to 5, were determined in detail by the use of infrared external reflection spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The most striking observation is that at pH 2 and 3 almost all oxidized iron is dissolved in solution, whereas at pH 4 and 5 the product of iron oxidation is deposited on the iron surface in the form of lepidocrocite, gamma-FeOOH. Detailed iron surface and solution analyses allow the proposition of the following overall oxidation reactions: [EQUATION: SEE TEXT]. At pH 2 and 3, only a very thin surface layer consisting of FeO and Fe(OH)2 with polymeric structure is observed on the iron surface. The amounts of these surface species remain almost constant (2-5 nm) from the first minutes to a few hours of reaction, if pH is kept constant. Nevertheless, with time the akaganeite-like, beta-FeOOH structure is also detected. At pH 4 and 5, the amount of lepidocrocite deposited on the iron surface increases with reaction time. Detailed quantitative evaluation of the lepidocrocite produced at pH 5 and its surface distribution on iron was performed based on the comparison of infrared spectroscopic data with spectral simulation results of assumed surface structures. At pH 4 and 5 and a temperature of 40-50 degrees C, in addition to a very large amount of lepidocrocite other oxy-hydroxide surface species such as goethite (alpha-FeOOH) and feroxyhite (delta-FeOOH), were identified. Addition of Cl- ions to solution at 10(-3) M concentration at pH 5 increases the oxidation rate of iron by about 50%, and lepidocrocite remains the only oxidation product. Similarly, an addition of Fe2+ ions to solution at pH 5 very strongly enhances lepidocrocite formation as well as its conductivity. The latter finding is important for the possible application of metallic iron as a catalyst in redox reactions, for example, for decomposition of difficult-to-biodegrade water pollutants.  相似文献   

9.
AbstractAn electroactive poly(triphenylamine) (PTPA-C6) is applied to the surface of iron as a corrosion-protection layer. The iron substrate coated with PTPA-C6 is thermally treated at different temperatures (up to 80°C) to study the effect of thermal treatment of PTPA-C6 on the corrosion behavior of iron. Experimental results indicate that the contact angle of the PTPA-C6 film increases from 81.6° at room temperature to 100° after thermal treatment at 80°C for 1 hr. The surface becomes more hydrophobic after thermal treatment, which will lower the penetration of water to the iron surface. Adhesion tests (ASTM 3359) indicate that adhesion between the PTPA-C6 and iron substrate is enhanced after thermal treatment. Additionally, a thin iron oxide layer formed between the PTPA-C6 and iron substrate as a passivation layer. The synergistic effect of these factors makes PTPA-C6 a very effective corrosion protection layer on iron substrate after appropriate thermal treatment. Corrosion protection efficiency increases from 90% of the pristine PTPA-C6 to 99.9% of the 80°C treated PTPA-C6.  相似文献   

10.
Ferreira SL  Nano RM 《Talanta》1994,41(11):1937-1941
The present work describes the use of 1-(2-thiazolylazo)-2-naphthol (TAN) as a spectrophotomeric reagent for iron determination. TAN reacts with iron(II) forming a brown complex with absorption maximum at 575 and 787 nm. The following parameters were studied: complex stability, pH effect, amount of the TAN, buffer selection, amount of acetate buffer, reductor effect, order of addition of reagents and adherence to Beer's Law. The results demonstrated that iron can be determined with TAN in a pH range of 4.0-6.2 with an apparent molar absorptivity of 1.83 x 10(4) 1 . mol(-1) . cm(-1) (at 787 nm) and 1.41 x 10(4) 1 . mol(-1) . cm(-1) (at 575 nm). Beer's Law is obeyed for at least 3.00 microg/ml. The TAN reacts with other cations, but at 787 nm only the iron(II)-TAN complex absorbs. So, iron can be determined selectively in the presence of several cations. A procedure based on the direct mixture of the sample and a chromogenic solution is proposed, where iron can be determined rapidly and easily. Such procedures were used for the determination of iron in several geological matrices. No significant differences were obtained for TAN method and certificate results.  相似文献   

11.
在程序控温电加热水平陶瓷管反应器、N2气氛和模拟烟气气氛及300~1 100℃时,对甲烷在金属铁及其氧化铁表面还原NO的特性进行了实验研究。为使甲烷在脱硝反应后完全燃尽以及脱硝反应过程生成的CO等中间产物完全燃尽,在第一段加热炉后串联了第二段加热炉,补充氧气,实现燃尽。结果表明,甲烷在金属铁及氧化铁表面能够高效地还原NO。在N2气氛中,在900℃以上温度范围内甲烷在金属铁表面的脱硝效率超过95%,与甲烷在氧化铁表面的脱硝效率差别很小。在模拟烟气条件下,当过量空气系数小于1.0时,在900℃以上时,甲烷在金属铁和氧化铁表面的脱硝效率都能超过90%,且未燃尽和燃尽两种条件下NO的还原率相差不大。NO同时通过金属铁的直接还原和甲烷的再燃还原两种反应机理脱除。而甲烷则通过还原氧化铁为金属铁,从而使金属铁直接还原NO可持续进行。同时,甲烷再燃反应的中间产物HCN/NH3等被氧化铁还原,从而使燃尽后的脱硝效率不下降。研究结果表明,甲烷和金属铁或氧化铁在富燃料条件下可有效地还原NO。  相似文献   

12.
Skin as a manageable organ can provide direct or indirect information of tissue iron overload resulting from inherited disorders as hemochromatosis. Patients with hemochromatosis were evaluated at three consecutive phases along the therapy programme. Nuclear microprobe techniques were used to assess skin iron and Total Reflection X-ray Fluorescence to determine the plasma iron concentrations. Results showed that iron pools were differently correlated at the three therapy phases. These variations highlighted the value of skin iron content to assess organ iron deposition and therapy efficacy. Skin iron content can be used for a better management of patients with iron overload pathologies.  相似文献   

13.
The background compensation performance of a Zeeman corrector with the magnetic field acting on the graphite atomization cell was assessed for 30 elements and 49 element lines in an iron matrix. Two of the elements studied, gallium and zinc, are influenced by background overcompensation which introduces serious negative systematic errors. The overcompensation is due to the presence of iron lines close to the 287.4-nm gallium line and the 213.9-nm zinc line; when the magnetic field is on, the σ-components of the adjacent iron lines overlap at the position of the analyte line and a background, which is not present when the magnetic field is off, is recorded. When gallium and zinc are measured under the same conditions but with deuterium arc background correction, the adjacent iron lines cause positive systematic errors. These spectral interferences for gallium in the presence of iron can be avoided by doing the measurements at the 294.4-nm gallium line; the two lines have about the same sensitivity. When zinc is to be measured at the 213.9-nm line, with either type of background correction, the spectral interferences from iron can be avoided by careful selection of the graphite-furnace parameters. In addition to spectral interferences, iron also affects the sensitivity for both gallium and zinc.  相似文献   

14.
The analysis of steel is simplified in a large measure by the removal of iron prior to the determination of a number of constituents. This report deals with the extraction of iron as the thiocyanate complex with n-butyl phosphate. The condition for optimal iron extraction were investigated. It was found that at a thiocyanate to iron ratio of 6 : 1, removal of iron by the ester is 97.5 % using one extraction. This technique was successfully applied to the determination of aluminum in steel.  相似文献   

15.
A simple, non-separation method for the simultaneous, single-injection determination of nickel(II) and iron(II) is described. The method is based on doublet peaks in a single-line system, with multiple vertical (absorbance) measurements of the doublet peak profile. Doublet peaks occur when the center of the sample zone remains unmixed. Nickel(II), 0.17–0.24 M, in the presence of 2.7–5.4 mM iron(II) is determined by direct spectrophotometry of the nickel(II) ion at the center of the sample zone, Iron(II) is first oxidized on-line by peroxodisulfate to iron(III), which complexes with thiocyanate to form the intensely red complex; this is measured at the peak maximum corresponding to the trailing edge of the sample zone. Correction are made for absorbance of nickel and its reduction in the iron thiocyanate complex formation. The absorbance of nickel(II) ion and the iron thiocyanate complex are both measured at 395 nm from a single injected sample. The general utility of the doublet peak method is discussed.  相似文献   

16.
Banerjee S  Dutta RK 《Talanta》1980,27(2):212-213
A complexometric method for the determination of magnesium in nodular cast iron, alloyed cast iron and roll samples has been developed. The bulk of the iron is removed by ether extraction and the phosphate as zirconium phosphate. The other elements are removed by extraction with dithiocarbamate into chloroform. Magnesium is then titrated with EDTA at pH 10, with Eriochrome Black T as indicator. Calcium interferes, but is very rarely present in such cast iron samples.  相似文献   

17.
Origin of the unusual kinetics of iron deposition in human H-chain ferritin   总被引:4,自引:0,他引:4  
From microorganisms to humans, ferritin plays a central role in the biological management of iron. The ferritins function as iron storage and detoxification proteins by oxidatively depositing iron as a hydrous ferric hydroxide mineral core within their shell-like structures. The mechanism by which the mineral core is formed has been the subject of intense investigation for many years. A diiron ferroxidase site located on the H-chain subunit of vertebrate ferritins catalyzes the oxidation of Fe(II) to Fe(III) by molecular oxygen. A previous stopped-flow kinetics study of a transient mu-peroxodiFe(III) intermediate formed at this site revealed very unusual kinetics curves, the shape of which depended markedly on the amount of iron presented to the protein. In the present work, a mathematical model for catalysis is developed that explains the observed kinetics. The model consists of two sequential mechanisms. In the first mechanism, turnover of iron at the ferroxidase site is rapid, resulting in steady-state production of the peroxo intermediate with continual formation of the mineral core until the available Fe(II) in solution is consumed. At this point, the second mechanism comes into play whereby the peroxo intermediate decays and the ferroxidase site is postulated to vacate its complement of iron. The kinetic data reveal for the first time that Fe(II) in excess of that required to saturate the ferroxidase site promotes rapid turnover of Fe(III) at this site and that the ferroxidase site plays a role in catalysis at all levels of iron loading of the protein (48-800 Fe/protein). The data also provide evidence for a second intermediate, a putative hydroperoxodiFe(III) complex, that is a decay product of the peroxo intermediate.  相似文献   

18.
A mechanism of joint electroreduction of nickel(II) and iron(II) ions is proposed and experimentally substantiated. The mechanism is based on the hypothesis that nickel and iron hydroxo complexes are discharged on common active sites formed as a result of electrochemical adsorption of nickel hydroxo complexes. The analysis of kinetic equations derived for partial current densities of the evolution of iron and nickel to form the alloy shows that the kinetics of these processes is determined by the concentration of ions of both types. It is shown that at the joint deposition of nickel and iron, the rate constant for iron(II) electroreduction exceeds the rate constant for nickel(II) electroreduction and this predetermines the enrichment of the resulting alloy with the more electronegative component.  相似文献   

19.
We report on the synthesis of highly monodisperse iron nanoparticles, using a chemical reduction method. Iron nanoparticles with an average diameter of 6 nm and a geometric standard deviation of 1.3 were synthesized at a pH of 9.50 from ferric chloride precursor with sodium borohydride as the reducing agent, polyacrylic acid as the dispersing agent, and palladium ions as seeds for iron nanoparticle nucleation. The resulting nanoparticles were ferromagnetic at 5 K and superparamagnetic at 350 K. The dispersing agent polyacrylic acid (PAA) was shown to prevent iron nanoparticles and possibly palladium clusters from aggregating; in the absence of PAA, only aggregated iron nanoparticles were obtained. The addition of palladium ions decreased the diameter of iron nanoparticles presumably by providing sites for heterogeneous nucleation onto palladium clusters. In the absence of palladium ions, the mean diameter of iron nanoparticles was approximately 110 nm and the standard deviation increased to 2.0. The pH of the solution also was found to have a significant effect on the particle diameter, likely by affecting PAA ionization and altering the conformation of the polymer chains. At lower pH (8.75), the PAA is less ionized and its ability to disperse palladium clusters is reduced, so the number of palladium seeds decreases. Therefore, the resulting iron nanoparticles were larger, 59 nm in diameter, versus 6 nm for nanoparticles formed at a pH of 9.50.  相似文献   

20.
黄豆铁蛋白提取新方法及其与豌豆铁蛋白活性比较   总被引:1,自引:0,他引:1  
铁蛋白是广泛存在于动物、微生物及植物体中的一种铁贮藏蛋白, 具有去除二价铁的毒性以及调节机体细胞铁代谢平衡的作用. 本文以黄豆种子为原料, 开发出黄豆铁蛋白提取新方法, 即将黄豆粗提液在55 ℃下加热15 min, 再将冷却后的上清液分别用500 mmol/L MgCl2和700 mmol/L柠檬酸三钠进行盐析. 离心得到的铁蛋白粗提液经透析后, 用DEAE-cellulose弱阴离子交换层析和Sephacryl S-300凝胶过滤层析进一步分离, 得到电泳纯的铁蛋白. Native-PAGE电泳测得分子量约为560000, SDS-PAGE电泳结果表明, 黄豆铁蛋白含有两种亚基, 分子量分别为28000和26500. 活性研究显示, 黄豆铁蛋白与豌豆铁蛋白铁氧化沉淀和还原释放反应的活性明显不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号