首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential-pulse stripping voltammetry is applied to measure zinc, cadmium, lead and copper by anodic stripping and selenium(IV) by cathodic stripping in rain water at pH 2; subsequently, at pH 9,1, manganese is measured by anodic stripping on the same portion, and cobalt and nickel are measured in the adsorptive mode after formation of their dimethylglyoximates. The instrumental parameters are optimized. The linear ranges, mutual interferences and detection limits are studied. Excellent accuracy is demonstrated; the standard deviation is around 15% at 2.5–50 μg l?1 levels. The method is shown to be applicable for rain water.  相似文献   

2.
Differential-pulse anodic stripping voltammetry with a mercury microelectrode is used for the determination of zinc, cadmium, lead and copper in wine at its natural pH without pretreatment. The effects of the matrix on the stripping peaks are studied in detail by varying the concentration of the metals. Intermetallic (CuZn) interferences and the effects of oxygen are described. The results obtained for the labile metal contents varied from 2 μg l?1 for cadmium to 148 μg l?1 for zinc; standard addition plots were linear over about two orders of magnitude above these levels, demonstrating the negligible effect of organic matter. Acidification of the sample with hydrochloric acid to pH 1 allowed the total metal contents to be determined. The reliability of the method was tested by comparison with the results obtained with atomic absorption spectrometry; the differences were within 10–20%.  相似文献   

3.
Mahajan RK  Walia TP  Sumanjit  Lobana TS 《Talanta》2005,67(4):755-759
The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at −0.35 V, which has been used for the determination of copper in the concentration range of 7.85 × 10−9 to 8.00 × 10−6 M with accumulation time of 360 s at −0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.  相似文献   

4.
Urine samples are treated with concentrated nitric acid and potassium permanganate ar 70°C for 10 min prior to injection. The flow electrode system consists of a 10-μm diameter gold fibre working electrode, a glassy carbon reference electrode and a platinum counter electrode. In the fully automated constant-current stripping procedure, the gold fibre is first covered with a fresh gold film after which the sample is electrolyzed for 1 min prior to stripping in 0.1 M hydrochloric acid with a current of 0.1μA. The procedure is repeated on a spiked sample after which the sample analyte concentrations are evaluated and presented digitally and graphically on a printer/plotter. The results obtained for bismuth, copper and mercury in a urine reference sample were 36.9, 39.7 and 47.7 μg l?1 with standard deviations (n=10) of 3.2, 4.2 and 2.1, respectively. The certified values for copper and mercury were 45 and 51 μg l?1; no certified value was available for bismuth.  相似文献   

5.
Felypressin, a peptide containing eight amino acids including cystine, is studied by cathodic stripping voltammetry (c.s.v.) at a mercury drop electrode at pH 4.6 in the concentration interval 5 × 10?9-7 × 10?7 M. Excess of copper(II) ions is required to obtain the c.s.v. activity. The stripping peak potential is ?0.55 to ?0.70 V vs. SCE depending on the excess of copper(II). The accumulated product is adsorbed both in its oxidized and reduced state. Interference from c.s.v.-active substances which desorb in the reduced state can be eliminated by applying a repetitive cyclic scan and evaluating the second or third scan. Lypressin and somatostatin, two other cystine-containing peptides, are also c.s.v.-active.  相似文献   

6.
Differential-pulse anodic stripping voltammetry at a mercury microelectrode is applied to determine labile and total zinc, cadmium, lead and copper in samples of rain and sea water. The low ohmic drop associated with microelectrodes permits reliable measurements in rain water without addition of supporting electrolyte. The values found in a typical sample were 0.95 μg l?1 Cu, 0.38 μg l?1 Pb, 0.01 μg l?1 Cd and 0.95 μg l?1 Zn, with relative standard deviations in the range 4–18%. The small effects of organic matter at microelectrodes, compared with those at a hanging mercury drop electrode, allow sensitive and reliable measurements of labile metals in surface sea water. Total metal concentrations are determined after acidification to pH 1.5 with hydrochloric acid. The results are compared with those obtained with atomic absorption spectrometry and with differential-pulse anodic stripping voltammetry at conventional mercury electrodes. Satisfactory results were obtained for a reference sea water.  相似文献   

7.
The use of a new carbon material — carbosital — for electrodes is reviewed. The behaviour of copper deposited on the carbosital electrode surface in anodic stripping voltammetry and chronopotentiometry is discussed. In anodic stripping voltammetry with a rotating carbosital disk electrode, the peak current and the number of coulombs involved in stripping copper are directly proportional to the square root of the electrode rotation rate during preelectroiysis; the peak current is directly proportional to the potential scan rate during stripping. For anodic stripping voltammetry and anodic stripping chronopotentiometry, linear calibration graphs are obtained in the range 1 X 10-3–1 x 10-6 M copper(II). The method is applicable to analysis of high-purity cadmium for copper.  相似文献   

8.
《Electroanalysis》2006,18(24):2486-2489
This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ?1500 mV for 2 minutes in a supporting electrolyte composed of 0.1 M pH 4.75 acetate buffer with 250 μg L?1 gallium yields well resolved copper and bismuth signals when analyzed with square‐wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100 μg L?1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98 μg L?1 utilizing a 2 minutes deposition time. The relative standard deviation for a copper concentration of 50 μg L?1 was 1.6% (n=10).  相似文献   

9.
In the presence of purine, the copper(II)/copper(Hg) couple splits into copper(II)/copper(I) and copper(I)/copper(Hg) couples, which form two well-separated systems of peaks under voltammetric conditions. The copper(I)/purine complex adsorbs on the electrode surfacer and can be deposited on the electrode surface by electroreduction of copper(II) ions at the HMDE or by electro-oxidation of the hanging copper amalgam drop electrode (HCADE). The deposit can be stripped either cathodically or anodically over the pH range 2–9. The cathodic stripping variant at the HCADE, in solution with pH 2, offers the best results, with linear response for the range 5 × 10?9–1.5 × 10?7 mol dm?3 purine after an accumulation time of 3 min. The detection limit found with the HMDE in the presence of copper(II) ions is higher.  相似文献   

10.
The behaviour of the complex of copper with 1,10-phenanthroline at a mercury electrode was investigated in acidic chloride media. Adsorption phenomena were observed by both differential-pulse and normal-pulse polarography. These properties were used in developing a sensitive stripping voltammetric procedurefor the determination of traces of copper. The effects of various operational parameters (pH, ligand concentration, potential and accumulation time) on the reduction current of the adsorbed chelate are discussed. Interferences by other trace metals and organic matter were investigated. A linear current-concentration relationship was observed up to about 1.5 × 10?7 M. The detection limit is 1.2 × 10?10 M copper after a 10-min accumulation time with a stirred solution.  相似文献   

11.
Zirconium metal (ca. I g) was dissolved in hydrofluoric acid, excess of which was removed by fuming with sulphuric acid. An aliquot of this solution was treated with sodium citrate and adjusted to pH 4.5. Lead, copper and cadmium were deposited on the hanging mercury drop electrode by applying a potential of ?0.8 V vs. Ag/AgCl for 1 min and anodic stripping voltammograms were recorded; the anodic peaks appeared at ?0.51, ?0.14 and ?0.67 V, respectively. In a separate run, zinc was deposited at ?1.2 V and the stripping peak appeared at ?1.1 V. Standard additions were used to quantify these impurities at levels in the low mg kg?1 range, with relative standard deviations of 5–11%.  相似文献   

12.
In the presence of adenine and adenosine, the copper(II)/copper(Hg) couple splits to the copper(II)/copper(I) and copper(I)/copper(Hg) couples. Sparingly soluble complexes of copper(I) with adenine and adenosine can be accumulated on the electrode surface either by reduction of Cu(II) ions or by oxidation of the copper amalgam electrode. The copper(I)/adenine deposit can be stripped either cathodically or anodically with detection limits of 5×10?9 and 2×10?8 mol dm?3, respectively. The copper(I)/ adenosine complex yields only the cathodic stripping peak with a detection limit of 9×10?6 mol dm?3. The stripping peaks obtained for the copper(I)/adenine and copper(I)/ adenosine complexes are better defined and appear over a wider range of pH than the peaks related to the corresponding mercury compounds. Adenosine cannot be determined in the presence of adenine bur adenine can be determined in the presence of moderate amounts of adenosine.  相似文献   

13.
An electrochemical adsorptive stripping approach is presented for the trace measurement of copper in some real samples. The method is based on the reduction of Cu2+ at pH 5.5 calcein blue (CB) containing solution at ?250 mV (vs. Ag/AgCl), adsorption of Cu? CB complex on hanging mercury drop electrode (HMDE) and the voltammetric determination by further reduction to Cu+ at HMDE. Experimental optimum conditions were determined in the fundamental studies. At the experimental optimum conditions the adsorbed complex of Cu2+ and calcein blue gives a well defined cathodic stripping peak current at ?0.135 V, which has been used for the determination of copper in the concentration range of 0.02 to 15 ng/mL with accumulation time of 90 s. The relative standard deviation (RSD) for the determination of 0.5 and 6.0 ng mL?1 were 2.60 and 1.94% respectively. (n=10). The method has been applied to the analysis of copper in analytical reagent grade salts and tap water, mineral water and drug samples with satisfactory results.  相似文献   

14.
The behaviour of selenium(IV) in cathodic stripping voltammetry is evaluated systematically. The effects of copper concentration, pH, deposition potential and complexing agents on the stripping peak are examined and criteria are given for the choice of suitable quantitative parameters. The detection limit was found to be 20 ng l?1 and the background contamination level was 35 ng l?1. Zinc and lead do not affect the determination of selenium if EDTA is added to the solution whereas cadmium interferes badly; the corresponding mechanisms are discussed.  相似文献   

15.
Alireza Mohadesi 《Talanta》2007,72(1):95-100
An electrochemical sensor for the detection of copper(II) ions is described using a meso-2,3-dimercaptosuccinic acid (DMSA) self-assembled gold electrode. First in ammonia buffer pH 8, copper(II) ions complex with self-assembled monolayer (SAM) via the free carboxyl groups on immobilized meso-2,3-dimercaptosuccinic acid (accumulation step). Then, the medium is exchanged to acetate buffer pH 4.6 and the complexed Cu(II) ions are reduced in negative potential of −0.3 V (reduction step). Following this, reduced coppers are oxidized and detected by differential pulse (DP) voltammetric scans from −0.3 to +0.7 V (stripping step). The effective parameters in sensor response were examined. The detection limit of copper(II) was 1.29 μg L−1 and R.S.D. for 200 μg L−1 was 1.06%. The calibration curve was linear for 3-225 μg L−1 copper(II). The procedure was applied for determination of Cu(II) to natural waters and human hairs. The accuracy and precision of results were comparable to those obtained by flame atomic absorption spectroscopy (FAAS).  相似文献   

16.
Electrochemical deposition from a 0.1 M sodium sulphate solution, containing Cu2+ (adjusted to pH 3 with hydrochloric acid) produced a well defined copper nanoparticle deposit on the surface of a boron doped diamond electrode. Changing conditions such as potential (-0.8, -1.0 and -1.2 V), time (5, 2 and 0.5 s) and concentration of Cu2+ (500, 250 and 100 microM) was found to give copper nanoparticles of varying size and particle density. The electrocatalytic properties of the copper surface towards nitrate reduction were explored. An in-situ copper nanoparticle production method was developed for the detection of nitrate; this involves electrodeposition, followed by linear sweep voltammetry for the reduction of nitrate and then application of a stripping potential to renew the electrode surface. The linear sweep was discovered to have homogenised the size of the nanoparticles but their number density was still dependant on the initial conditions of deposition. Some particles were still present at the surface after the stripping potential had been applied but repetitions of the procedure showed these did not have an effect on subsequent deposits. Optimisation of the method lead to applying a deposition potential of -0.8 V, at a BDD electrode for 5 s in a 0.1 M sodium sulphate solution (pH 3) containing 100 microM Cu2+ followed by a linear sweep at 1 V/s; this yielded a limit of detection of 1.5 microM nitrate. The analytical applicability of the technique was evaluated for nitrate detection in a natural mineral water sample and was found to agree well with that stated by the manufacturer.  相似文献   

17.
The determination of antimony and tin impurities in copper by anodic stripping voltammetry on a hanging mercury drop electrode is described. Antimony and tin were previously separated from copper by distillation with hydrobromic acid or a mixture of hydrobromic acid and hydrochloric acid. The method was applied to the analysis of various high-purity copper samples, commercially available, showing satisfactory sensitivity and precision. The determination limit was about 1.4· 10-9M for antimony and 7·10-10M for tin in solution, for pre-electrolysis times of respectively 15 and 25 min; this corresponds to 0.8 p.p.b. of antimony and 0.3 p.p.b. of tin for a 2-g sample and a final volume of 10 ml after separation.  相似文献   

18.
Dimenhydrinate exhibits a single adsorptive stripping peak at a hanging mercury drop electrode after accumulation at 0.0V vs Ag/AgCl electrode at pH 3.8 (acetate buffer). The addition of trace amounts of copper ions enhanced the dimenhydrinate peak and its height depends on the concentration of each dimenhydrinate and Cu2+. The adsorptive stripping response was evaluated with respect to accumulation time and potential, concentration dependence, electrolyte, the presence of other purines, surfactants and other metal ions, and some variables. The calibration graph for dimenhydrinate determination is linear over the range 2.0×10–8–2.0×10–7 M (pre-concentration for 60s). The correlation factor is found to be 0.985 and RSD is 3.2% at 1.0×10–7 M. Detection limit is 1.0×10–8 M after 5 min accumulation. The determination of dimenhydrinate in pharmaceutical formulations by the proposed method is also reported.  相似文献   

19.
An approximate but general theoretical treatment for reversible and irreversible stripping polarographic systems is presented. The treatment is based on the development of an average current (i), which at plating times exceeding 15 s. is analogous to the instantaneous current in d.c. polarography. Plots of i vs. (E – E°) are generated for reversible and irreversible waves and are discussed for the reduction of copper(II) in sea water as an example. From stripping polarography and anodic stripping voltammetry, this work indicates that the overall reduction of copper(II) at the natural pH is kinetically hindered and thus is “irreversible”. The reversibility and the determination of copper in sea water by a.s.v. can be improved by acidification and/or by the addition of ethylenediamine.  相似文献   

20.
At concentrations above 50 μg l?1, silver(I) is determined in nitric acid medium by means of potentiostatic deposition onto a platinum-fibre electrode and subsequent constant-current stripping in the sample or potentiometric stripping in a potassium permanganate medium. Interference from copper(II) is reduced by a pulsed potential procedure whereby copper deposited onto the fibre electrode is reoxidized intermittently. At concentrations below 50 μg l?1, silver(I) is determined by using a mercury-coated carbon-fibre electrode and constant-current stripping in acetonitrile containing 0.20 M perchloric acid. Potentiostatic deposition for 30 min yielded a detection limit of 0.24 μg l?1 silver(I) at the 3σ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号