首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A dual direct method for the ultratrace determination of thallium in natural waters by differential pulse anodic stripping voltamrnetry (d.p.a.s.v.) is presented. D.p.a.s.v. at the hanging mercury drop electrode and at the mercury film electrode is used in the concentration ranges 0.5–100 μg Tl l-1, and 0.01–10 μg Tl l-1, respectively. Quantification is aided by the technique of standard additions. The response of the method is optimized for typical natural surface water matrices. An intercomparison of thalium determinations performed by the two anodic stripping methods and electrothermal-atomization atomic absorption spectrometry on normal and thallium-spiked surface water samples demonstrates equivalent accuracy within the range where atomic absorption is applicable. The method appears free from serious interferences.  相似文献   

2.
Yue XF  Zhang ZQ  Yan HT 《Talanta》2004,62(1):97-101
A new flow injection catalytic spectrophotometric method is proposed for the simultaneous determination of nitrite and nitrate based on the catalytic effect of nitrite on the redox reaction between crystal violet and potassium bromate in phosphoric acid medium and nitrate being on-line reduced to nitrite with a cadmium-coated zinc reduction column. The redox reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of crystal violet at the maximum absorption wavelength of 610 nm. A technique of inserting a reduction column into sampling loop is adopted and the flow injection system produces a signal with a shoulder. The height of shoulder in the ascending part of the peak corresponds to the nitrite concentration and the maximum of the peak corresponds to nitrate plus nitrite. The detection limits are 0.3 ng ml−1 for nitrite and 1.0 ng ml−1 for the nitrate. Up to 32 samples can be analyzed per hour with a relative standard deviation of less than 2%. The method has been successfully applied for the simultaneous determination of nitrite and nitrate in natural waters.  相似文献   

3.
Trichlorobiphenyl is determined in the concentration range 0.004–1 mg l?1 by adsorptive stripping voltammetry at a hanging mercury drop electrode. Preconcentration is achieved by adsorption at a potential of ?0.40 (V (vs. Ag/AgCl), and desorption at ?1.10 V. Biphenyl interferes with the determination only when present in 5-fold molar amounts compared to trichlorophenyl. The interference of DDT is eliminated by prior treatment of the sample solution with sulphuric acid. The method was applied for the analysis of waste and natural waters, the relative standard deviation being <5%.  相似文献   

4.
This work describes the electroanalytical determination of Chlorpyriphos pesticide in natural waters using hanging mercury drop electrode allied to square wave adsorptive cathodic stripping voltammetry. The best responses were obtained in Britton?Robinson buffer solutions at pH 2.0, using a frequency of 100 s–1, a scan increment of 5 mV, a square wave amplitude of 25 mV and an accumulation potential of–0.4 V during 60 s. Therefore, voltammetric responses showed the presence of one well-defined and irreversible reduction peak, at–1.08 V vs. Ag/AgCl/KCl 1.0 M, which involves two electrons in the reduction of carbon?nitrogen bond in the N-heterocyclic system with the participation of protonation equilibrium preceding the electron transfer reaction. Analytical curves were constructed and compared to similar curves performed by gas chromatograph coupled to a selective nitrogen?phosphorus detector, which demonstrates that the proposed methodology is suitable for determining contamination by Chlorpyriphos in complex samples.  相似文献   

5.
Gao Z  Siow KS 《Talanta》1996,43(5):727-733
A highly sensitive and selective voltammetric procedure is described for the determination of trace amounts of iron. The procedure is based on the adsorptive collection of an iron-thiocyanate-nitric oxide complex on a hanging mercury drop electrode. The adsorbed complex catalyzes the reduction of nitrite in solution, which gives a detection limit of 40 ppt iron (30 s accumulation). The stripping current increases linearly with iron concentration up to 80 ppb. The relative standard deviations are 4.2% and 1.6% at 0.5 ppb and 40 ppb respectively. Most of the common ions, except cobalt, do not interfere with the determination of iron. The procedure is applied to determine iron in biological samples, natural waters and analytical-grade chemicals.  相似文献   

6.
Measurements of nitrate in natural waters with a nitrate ion-selective electrode are seriously affected by the presence of humic substances. These can be removed quantitatively by a clean-up procedure with cheap disposable adsorption columns packed with chemically-bonded alkylamino silica. The method is applied to natural water samples with high contents of humic substances. The nitrate concentrations found were in good agreement with determination by ion chromatography.  相似文献   

7.
A sensitive voltammetric method is presented for the determination of trace amounts of total chromium (Cr(III) and Cr(VI)) in natural waters, employing the square wave mode. The method is based on the preconcentration of the Cr(III)-TTHA complex by adsorption at the HMDE at the potential of –1.0 V vs. Ag/AgCl. The adsorbed complex is then reduced producing a response with a peak potential of –1.29 V and the peak height of the Cr(III) reduction is measured. The catalytic action of the nitrate ions on the Cr(III)-TTHA reduction has been elucidated using cyclic voltammetry. The adsorption of chromium complexes at the HMDE was investigated using out-of-phase a.c. voltammetry and the potential range of adsorption was determined.Based on these investigations optimal conditions for the determination of the total chromium concentration in the range 155–2000 ng 1–1 have been established. The determination limit is 15 ng 1–1 and the RSD is 3.5% for chromium concentrations 200 ng 1–1.The usefulness and wide scope of this method for reliable and highly sensitive chromium analysis down to the ultra trace levels existing in various types of natural waters is demonstrated by determinations of the total chromium content in lake, sea and rain water.  相似文献   

8.
Andruzzi R  Trazza A 《Talanta》1981,28(11):839-842
A new kind of semi-stationary mercury drop electrode is described, which can be used for the determination of trace metals in natural waters by differential-pulse anodic-stripping voltammetry. Results are reported for the determination of zinc in potassium chloride and in samples of sea-water. The reproducibility of the electrode and of the results obtained with it for zinc at the 10(-8)M level are very satisfactory.  相似文献   

9.
《Electroanalysis》2004,16(18):1508-1513
A stripping voltammetric method for the determination of ethylenethiourea in water samples is described based on its adsorptive deposition at the hanging mercury drop electrode (HMDE). In a borate buffer (pH 9.0) as supporting electrolyte, ETU is deposited at +100 mV (vs. Ag/AgCl) and stripped during the cathodic scan. The linear range for the measurements was from 2.0 to 100 μg L?1, with a detection limit calculated as 1.4 μg L?1 after a deposition time of 300 s and a RSD of 1.9% (n=5) for 50 μg L?1 of ETU measured. The interferences of some organic compounds and metallic ions were tested. Recoveries between 93 and 110% were obtained using the standard addition method for spiked samples of natural and drinking waters. The method is rapid and applicable in the monitoring of ETU residues in water samples.  相似文献   

10.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

11.
Thallium was determined in natural waters by anodic stripping voltammetry at a hanging mercury drop electrode, in acetate buffer pH 4.6+EDTA, after preconcentration and separation on an anion exhange resin. For Pacific Ocean surface waters a mean value of 13.0±1.4 ng Tl l?1 was found, while for freshwater samples the value was 3.7±1.0 ng Tl l?1. Thermodynamic considerations of thallium speciation predict that both in seawater and freshwater thallium exists primarily in the trivalent state. This was confirmed by experiment.  相似文献   

12.
A method is proposed for the electrochemical determination of perchlorate ion by voltammetry at the interface between two immiscible phases (water–o-nitrophenyl octyl ether). A demountable original-design amperometric ion-selective electrode based on a laser-microperforated polymeric membrane was fabricated for voltammetric measurements. The conditions of analytical signal recording in the determination of ClO4 ? were determined. The effect of interfering ions was assessed and amperometric selectivity coefficients were calculated. The accuracy of the procedure was verified by the added–found method. The developed electrode was applied to the determination of perchlorate in natural and drinking waters.  相似文献   

13.
The use of a hanging electrolyte drop electrode is examined for the determination of nitrate, perchlorate and iodide. A three-electrode system was used with a polarographic analyzer. Crystal violet dicarbollylcobaltate(III) electrolyte in the nitrobenzene phase and magnesium sulphate in the aqueous phase with a Pb/PbSO4 reference electrode made it possible to increase the viable potential range. For nitrate, the peak current/concentration relation was linear over the range 0–5 × 10?5 M, and nitrate in potable water was easily determined.  相似文献   

14.
《Analytical letters》2012,45(5):751-764
Abstract

A simple and efficient FIA method was used with good results to determine nitrite in residual waters and nitrate in natural waters. Nitrite determination is based on the reaction with iodide occurring in acidic medium and biamperometric detection of the formed iodine at two platinum electrodes polarised at a potential of 100 mV. Nitrate is similarly determined after its previous reduction to nitrite in a cadmium column. The method does not need the solution deaeration. However, the calibration graphs present two regions of linearity owing to the catalytic effect of the dissolved oxygen on the iodide oxidation by nitrite.  相似文献   

15.
Direct electrochemical determination of arsenate (AsV) in neutral pH waters is considered impossible due to electro-inactivity of AsV. AsIII on the other hand is readily plated as As0 on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of AsV to AsIII was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to MnII. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of AsV in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess (∼1 μM Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of −1.3 V. Deposition of As0 from dissolved AsV caused elemental Mn to be re-oxidised to MnII in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited AsV is subsequently quantified using an ASV scan. AsIII interferes and should be quantified separately at a more positive deposition potential of −0.9 V. Combined inorganic As is quantified after oxidation of AsIII to AsV using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM AsV using a deposition time of 180 s.  相似文献   

16.
In this study, for the first time, the electro-polymerization of Direct blue15 (DB15), an azo dye, was carried out on the surface of ITO. Furthermore, the poly(DB15) surface was electrochemically decorated with Ag nanoparticles (AgNPs), and the fabricated AgNPs/PDB15 electrodes were examined as nitrate sensors. Compared to unmodified ITO electrode, the AgNPs/PDB15 electrode had greatly improved electrochemical response to nitrate reduction. The nitrate determination in a linear range from 1.0×10−5 mol L−1 to 2.27×10−3 mol L−1 was performed with a detection limit of 9.66 μM. The synthesized electrode is a promising sensor for the electrochemical detection of nitrate pollutants in water.  相似文献   

17.
 A differential pulse voltammetric method for the determination of nitrate has been described, which is applicable to the analysis of natural water samples with nitrate levels greater than 2.8 × 10−6 M. A reduction peak for the nitrate ions at a freshly copper plated glassy carbon electrode was observed at about −0.50 V vs Ag ∣AgCl∣KClsatd electrode in a solution of 2.0 × 10−2 M Cu2+, 0.5 M H2SO4 and 1.0 × 10−3 M KCl and exploited for analytical purposes. The working linear range was established by regression analysis and found to extend from 2.8 ×10−6 M to 8.0 × 10−5 M. The proposed method was applied for the determination of nitrate in natural waters. The detection limit of the method was 2.8 × 10−6 M and the sensitivity was 0.9683 A·L/mol. The possible interferences by some ions such as phosphate, nitrite and some halides were determined and found to lead to shifts of the peak position and increasing the peak heights. Received March 15, 1999. Revision July 9, 1999.  相似文献   

18.
A rapid, sensitive and precise flow-injection method for the determination of nitrate in natural waters is presented. Nitrate is first reduced in a copperized cadmium column to nitrite, which reacts with 3-amino-1,5-naphthalenedisulphonic acid to form the azoic acid. This acid forms a fluorescent salt in alkaline medium. The injecton rate is about 30 h?1, the relative standard deviation for 10 injections of 2 × 10?5 M nitrate is 0.8%, and the detection limit (S/N = 3)_is 1 × 10?8 M nitrate.  相似文献   

19.
The use of selective pre-concentration and differential pulse anodic stripping voltammetry (DPASV) using a carbon paste electrode modified (CPEM) with spinel-type manganese oxide has been proposed for the determination of lithium ions content in natural waters. The new procedure is based on the effective pre-concentration of lithium ions on the electrode surface containing spinel-type Mn(IV) oxide with the reduction of Mn(IV) to Mn(III) and consequently the lithium ions intercalation (insertion) into the spinel structure. The best DPASV response was reached for an electrode composition of 25% (m/m) spinel-type MnO2 in the paste, 0.1 mol l−1 tris(hydroxymethyl)aminomethane (TRIS) buffer solution of pH 8.3, scan rate of 5 mV s−1, accumulation potential of 0.3 V versus saturated calomel reference electrode (SCE), pre-concentration time of 30 s and potential pulse amplitude of 50 mV. In these experimental conditions, the proposed methodology responds to lithium ions in the concentration range of 2.8×10−6 to 2.0×10−3 mol l−1 with a detection limit of 5.6×10−7 mol l−1. The determination of the lithium ions content in different samples of natural waters samples using the proposed methodology and atomic absorption spectrophotometry are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

20.
A sensitive, simple and reproducible square-wave cathodic adsorptive stripping voltammetric method is developed for the determination of 2-mercaptobenzimidazole (MBIM) in different water samples using a static mercury drop electrode (SMDE) as a working electrode. The solution conditions and instrumental parameters were optimized for the determination of MBIM by square-wave cathodic adsorptive stripping voltammetry. This method is based on a sensitive adsorptive reduction peak of the MBIM at ?0.532 V vs. Ag/AgCl reference electrode in a Britton-Robinson buffer at pH 10.0. The linear concentration range was 20–600 ng ml?1 when using 0.0 V as the accumulation potential. The detection limit of the method was calculated to be 8.41 ng ml?1. The precision was excellent with relative standard deviations (n = 20) of 2.30%, 1.71%, 2.25% and 1.33% at MBIM concentrations of 40, 90, 200 and 500 ng ml?1, respectively. The proposed voltammetric method is used for the determination of MBIM in different spiked water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号